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ABSTRACT

CLUSTERABILITY, MODEL SELECTION AND EVALUATION

MAY 2019

KAIXUN HUA

B.Sc., SHANGHAI JIAO TONG UNIVERSITY

M.Eng., CORNELL UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS BOSTON

Ph.D., UNIVERSITY OF MASSACHUSETTS BOSTON

Directed by: Professor Dan A. Simovici, Professor

Clustering is a central topic in unsupervised learning and has a wide variety of

applications. However, the increasing needs of clustering massive datasets and the

high cost of running clustering algorithms poses difficult problems for users, while to

select the best clustering model with a suitable number of clusters is also a primary

focus. In this thesis, we mainly focus on determining whether a data set is clusterable,

and what is the natural number of clusters of in a dataset.

First, we approach data clusterability from an ultrametric-based perspective. A

novel approach to determine the ultrametricity of a dataset is proposed via a special

type of matrix product and via this measure, we can evaluate the clusterability of it.

Then, we show that our method of matrix product on the distance matrix will finally

generate a sub-dominant ultrametric distance space of the original dataset. In addi-

tion, if a dataset has a unimodal or poorly constructed structure, its ultrametricity
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will be lower than other datasets with the same cardinality. We also show that by

promoting the clusterability of a dataset, a poor clustering algorithm will perform

better on the same dataset.

Secondly, we present a technique grounded in information theory for determining

the natural number of clusters existent in a data set. Our approach involves a bi-

criterial optimization that makes use of the entropy and the cohesion of a partition.

Additionally, the experimental results are validated by using two quite distinct clus-

tering methods: the k-means algorithm and Ward hierarchical clustering and their

contour curves. We also show that by modifying the parameter, our approach can

handle dataset with heavily imbalanced clustering structure, which is further compli-

cated in practice.
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CHAPTER 1

INTRODUCTION

1.1 Background

Clustering is the prototypical unsupervised learning activity which consists of

identifying cohesive and well-differentiated groups of records in data. It aims to

partition a set of objects such that similar objects will be assigned to the same group

while those that are dissimilar will be placed in different groups [40].

However, this definition is not entirely satisfactory. It is still hard to define exactly

when two objects are similar and to what degree. The general challenges of clustering

are specified in [40]:

• What is a cluster?

• What features should be used?

• Should the data be normalized?

• Does the data contain any outliers?

• How do we define the pair-wise similarity?

• How many clusters are present in the data?

• Which clustering method should be used?

• Does the data have a natural clustering structure?

• Are the discovered clusters and partition valid?
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In this thesis, our work mainly focuses on solving the questions related to cluster-

ing tendency and cluster validity. These two topics bear importance at very different

times in the clustering process. Clustering tendency is important before generating

partitions, while cluster validity is considered after running the clustering algorithms.

Clustering Tendency Generally, before executing the clustering task, it is worth-

while to analyze the underlying structure of the data set. Running a clustering

algorithm is expensive, especially with the rapid increase of data size recently. This

motivates the users to asses the “goodness” of the data set before running the cluster-

ing algorithm. Here, the “goodness” refers to how easily the data set can be clustered;

more technically, we seek to determine how well the feature (or representation) sep-

arates the data set into clusters.

Despite the utility of checking clustering tendency of a data set, there is still no

clear definition for measuring the “goodness” of a data set. Without a measure of

“goodness”, we risk attempting to cluster a dataset with no underlying clustering

structures. Any current clustering algorithm will still produce a result, even though

that result will fail to accurately represent the data. These problems can create not

only a waste of resources and time but also misleading results for potential clients.

Figure 1.1a and Figure 1.1b give an example of “null” situation for clustering. This

data is generated from one Gaussian Distribution and has no cluster structure in it.

However, if we apply k-means with k = 4 to it, a clustering result with four clusters

still be produced, even though these clusters are meaningless for understanding the

data set.

Cluster Validity Even if we can determine there is a clustering structure in a

data set, we still face new problems after running the clustering algorithms. It is

still necessary to justify whether the produced clustering really is the best clustering

representation of the data set.
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(a) A dataset with no cluster structure (b) Partition by k-means with 4 clusters.

Figure 1.1: A Dataset without any cluster structures can still be partitioned by k-
means clustering algorithm.

Several issues arise in evaluating the “goodness” of a clustering result. One such

issue is deciding if clusters produced by the algorithm really reflect some intuitive

grouping of the data set. It is entirely possible for an algorithm to make a clustering

that makes sense numerically but has no practical use.

Different clustering algorithms will probably give different clustering results for

the same data set. Even for a single clustering algorithm, changing its parameter

will create a significant variance on the final clustering result. In these cases, it

is necessary to consider which algorithm and which parameters produced the most

suitable partition.

In particular, most clustering algorithms need a parameter k that specifies the

number of clusters to detect. Determining the best choice of k for such algorithms

is a long-standing and challenging problem that has attracted a great number of

investigators. Determining this k is intimately related to determining the “natural”

clustering structure in a data set, as discussed above.

The choice of optimal parameters is made even more difficult by the fact that

many algorithms require a dissimilarity/similarity measure on a data set. Given the

tremendous number of choices for dissimilarity/similarity measures, it is even harder
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to select the most suitable one. Currently, there is still no universal method to help

the users to make this choice.

Figure 1.2 gives an example of a data set generated from five Gaussian Distribu-

tion. In this data set, k-means clustering algorithm is run on it and we can see that

given different parameter of k, the final clustering results will fit the data set with

the corresponding number of groups.

As we mentioned above, many of the problems for clustering analysis mainly come

from the ambiguity of the definition of similarity (or dissimilarity) between objects.

Because of this ambiguity, the clustering results may be affected by the usage of

different types of clustering algorithm. In addition, the choice of parameters of the

clustering algorithm may also influence the results.

There are several types of similarity or dissimilarity for defining the closeness

between two objects. A general definition of dissimilarity is as follows:

Definition 1.1.1. A dissimilarity on a set S is a mapping d : S ×S −→ R such that

(i) d(x, y) > 0 and d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x);

A dissimilarity on S that satisfies the triangular inequality

d(x, y) 6 d(x, z) + d(z, y)

for every x, y, z ∈ S is a metric and we usually term d(x, y) as the distance between

points x and y.

The most commonly used distance is the Minkowski distance. Let two vectors x =

(x1, x2, . . . xn),y = (y1, y2, . . . yn), we can have the definition of Minkowski distance

of order p between x,y as follow:

Definition 1.1.2. dp(x,y) = ||x− y||p = (
∑n

i=1 |xi − yi|p)
1
p

4



(a) Partition with 2 clusters. (b) Partition with 3 clusters.

(c) Partition with 4 clusters. (d) Partition with 5 clusters.

(e) Partition with 6 clusters. (f) Partition with 7 clusters.

Figure 1.2: A Dataset with five Gaussian distributed classes which is separated by
k-means algorithm for different values of k. If we select a suitable k, we can have a
better clustering result than others. However, even if a wrong value of k is selected,
the algorithm still returns a clustering result.

With a different choice of p, dp can be corresponding to the different type of

distance. For instance, p = 1 corresponds to the Manhattan distance while p = 2 will

generate the Euclidean distance.
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One compelling case is the Chebyshev distance, which can be acquired when p

reaches infinity:

lim
p→∞

(
n∑
i=1

|xi − yi|p)
1
p =

n
max
i=1
|xi − yi|

All metrics above did not consider the weight of different variables. In their

definitions, each variable has the same importance. In practice, some variables may

probably more significant than others. Therefore, we can introduce the relationship

between each variable and forms the Mahalanobis distance.

Suppose we have a covariance matrix S, then the distance between x and y is

defined as follow:

d(x,y) =
√
|x− y|TS|x− y|

If we set S as the identity matrix, then the Mahalanobis distance will become the

Euclidean distance. If we let the covariance matrix as an arbitrary diagonal matrix,

then we can weight each dimension with different values on the diagonal of S.

Besides the arbitrary choice of metrics on a dataset, the selection of distinct clus-

tering algorithms will also lead to vastly different clustering results. There are sev-

eral types of clustering algorithms, and each clustering algorithm performs differently

depending on the shape of the data set of interest. Usually, partitional-based clus-

tering is commonly used in practice, which is best for data sets for which we expect

spherical-shaped clusters. The most commonly used algorithm of this type is k-means

clustering algorithm. This algorithm requires a parameter k that specifies the num-

ber of clusters. The final result of k-means clustering is to achieve “close enough for

points within-cluster and far enough for points between-cluster”.

Initially, users need to select k random points as the center points of the prelimi-

nary clusters, then for each point in the data set, assign it to the cluster whose center

is closest. Then based on the preliminary clustering, we recalculate the locations of
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center points and reassign the data points to the clusters corresponding to the new

closest centers. We repeat this process until the locations are stabilized and the final

assignment forms the final clustering result. Depending on the definition of “close-

ness” or the dissimilarity between points, k-means clustering algorithm will generate

various clustering results.

Another popular type of clustering algorithm is the hierarchical clustering, which

exists two forms: agglomerative and divisive. The first type declares each single

point as a cluster, then combines “close” clusters until every point is contained in

one single cluster. Finally, by keeping track the process of combination of clusters, a

tree structure of the data set can be established. The divisive type executes the same

task but in a reverse way. It starts from one single cluster which contains all points,

and it separates the cluster into smaller pieces until every cluster only has one single

point. Similarly to before, we can also create a tree structure that visually describes

the division process. In both case, we refer to the tree as dendrogram.

The method for determining which clusters are close is known as “linkage”. Each

choice of linkage creates a unique hierarchical clustering algorithm. The commonly

used linkages are “single-linkage”, “complete-linkage”, “average-linkage”, “Ward-linkage”,

etc. Compared to the partitional-based clustering algorithms, hierarchical clustering

methods can competently handle non-spherical shaped clusters and have no param-

eter k that requires the users to select the number of clusters before running the

algorithm. Users can easily get a partition of the data set by choosing a stopping

point in the agglomerative or divisive process of the algorithm.

1.2 Our Contribution

In this thesis, we aim to address issues in clustering tendency and cluster validity.

We mainly utilize the concept of ultrametric and partitional generalized entropy to

solve the problems.
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We first provide the reader with an introduction to the basic knowledge and

concepts related to ultrametrics. We also introduce the notion of ultrametricity, which

measures how close a dissimilarity is to an ultrametric. The idea of β-entropy and

the definition of a metric on a partition space based on β-entropy are also illustrated.

We separate the thesis into two parts. In the first, we consider the problem of

clustering tendency. We define the concept of clusterability and show that it checks

whether a dataset has a significant “natural” cluster structure. In particular, there

are two findings of note:

• By increasing the clusterability of the dataset, we can improve the clustering

results from some conventional clustering algorithms.

• With a given radius r, an r-spherical clustering can be performed on the dataset.

This clustering result enables the users to find the natural number of clusters

and detect the corresponding outliers.

In the second part, we will apply the concept of multi-objective optimization to

define a dual-criteria for detecting the number of clusters. Based on the monotonicity

of the function of the sum of squared error(sse) and the anti-monotonicity of parti-

tional β-entropy with respect to the number of clusters k, we can form a compromise

between these two criteria and achieve a reasonable k for the dataset. We also explore

the performance of our method on a dataset with imbalanced cluster distribution. We

conclude that by varying the value of β(mainly decreasing it), we can achieve a bet-

ter result for detecting the number of clusters on a dataset with imbalanced clusters.

Finally, we propose a method to validate the result of our dual-criteria method. This

method makes use of the distance between partitions generated by different algo-

rithms. Ostensibly, if a natural clustering structure exists in data, two clustering

algorithms should produce similar clustering results. Therefore, the distance between

such clustering results will be minimal.
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CHAPTER 2

PRELIMINARIES

2.1 Ultrametric

If the stronger inequality

d(x, y) 6 max{d(x, z), d(z, y)}

is satisfied instead of the traditional triangular inequality, d is said to be an ultrametric

and the pair (S, d) is an ultrametric space.

Definition 2.1.1. A closed sphere in (S, d) is a set B[x, r] defined by

B[x, r] = {y ∈ S | d(x, y) 6 r}.

When (S, d) is an ultrametric space two spheres having the same radius r in (S, d)

are either disjoint or coincide [74].

Definition 2.1.2. the collection of closed spheres of radius r in S, Cr = {B[x, r] |

r ∈ S} is a partition of S; we refer to this partition as an r-spheric clustering of

(S, d).

In an ultrametric space (S, d) every triangle is isosceles. Indeed, let T = (x, y, z)

be a triplet of points in S and let d(x, y) be the least distance between the points of T .

Since d(x, z) 6 max{d(x, y), d(y, z)} = d(y, z) and d(y, z) 6 max{d(y, x), d(x, z)} =

d(x, z), it follows that d(x, z) = d(y, z), so T is isosceles; the two longest sides of this

triangle are equal.
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It is interesting to note that every r-spheric clustering in an ultrametric space is a

perfect clustering [4]. This means that all of its in-cluster distances are smaller than

all of its between-cluster distances. Indeed, if x, y belong to the same cluster B[u, r]

then d(x, y) 6 r. If x ∈ B[u, r] and y ∈ B[v, r], where B[u, r] ∩ B[v, r] = ∅, then

d(v, x) > r, d(y, v) 6 r and this implies d(x, y) = d(x, v) > r because the triangle

(x, y, v) is isosceles and d(y, v) is not the longest side of this triangle.

Example 2.1.3. Let S = {xi | 1 6 i 6 8} and let (S, d) be the ultrametric space,

where the ultrametric d is defined by the following table:

d(xi, xj) x1 x2 x3 x4 x5 x6 x7 x8

x1 0 4 4 10 10 16 16 16

x2 4 0 4 10 10 16 16 16

x3 4 4 0 10 10 16 16 16

x4 10 10 10 0 6 16 16 16

x5 10 10 10 6 0 16 16 16

x6 16 16 16 16 16 0 4 4

x7 16 16 16 16 16 4 0 4

x8 16 16 16 16 16 4 4 0

The closed spheres of this spaces are:
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B[xi, r] =



{xi} for r < 4,

{x1, x2, x3} for 4 6 r < 10,

{x1, x2, x3, x4, x5} for 10 6 r < 16,

S for r = 16,

for 1 6 i 6 3,

B[xi, r] =


{xi} for r < 6,

{x4, x6} for 6 6 r < 16,

S for r = 16,

for 4 6 i 6 5,

B[xi, r] =


{xi} for r < 4,

{x6, x7, x8} for 4 6 r < 16,

S for r = 16,

for 6 6 i 6 8.

Based on the properties of spheric clusterings mentioned above meaningful such

clusterings can be produced in linear time in the number of objects. For the ultra-

metric space mentioned in Example 2.1.3, the closed spheres of radius 6 produce the

clustering

{x1, x2, x3}, {x4, x5, }, {x6, x7, x8}.

If a dissimilarity defined on a data set is close to an ultrametric it is natural to assume

that the data set is clusterable. We assess the closeness between a dissimilarity d

and a special ultrametric known as the subdominant ultrametric of d using a matrix

approach.
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Let S be a set. Define a partial order “6” on the set of definite dissimilarities DS

by d 6 d′ if d(x, y) 6 d′(x, y) for every x, y ∈ S. It is easy to verify that (DS,6) is a

poset.

The set US of ultrametrics on S is a subset of DS.

Theorem 2.1.4. Let {di ∈ US | i ∈ I} be a collection of ultrametrics on the set S.

Then, the mapping d : S × S −→ R>0 defined as

d(x, y) = sup{di(x, y) | i ∈ I}

is an ultrametric on S.

Proof. We need to verify only that d(x, y) satisfies the ultrametric inequality d(x, y) 6

max{d(x, z), d(z, y)} for x, y, z ∈ S. Since each mapping di is an ultrametric, for

x, y, z ∈ S we have

di(x, y) 6 max{di(x, z), di(z, y)}

6 max{d(x, z), d(z, y)}

for every i ∈ I. Therefore,

d(x, y) = sup{di(x, y) | i ∈ I}

6 max{d(x, z), d(z, y)},

hence d is an ultrametric on S.

Theorem 2.1.5. Let d be a dissimilarity on a set S and let Ud be the set of ultra-

metrics Ud = {e ∈ US | e 6 d}. The set Ud has a largest element in the poset

(US,6).
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Proof. The set Ud is nonempty because the zero dissimilarity d0 given by d0(x, y) = 0

for every x, y ∈ S is an ultrametric and d0 6 d.

Since the set {e(x, y) | e ∈ Ud} has d(x, y) as an upper bound, it is possible to

define the mapping e1 : S2 −→ R≥0 as e1(x, y) = sup{e(x, y) | e ∈ Ud} for x, y ∈ S.

It is clear that e 6 e1 for every ultrametric e. We claim that e1 is an ultrametric on

S.

We prove only that e1 satisfies the ultrametric inequality. Suppose that there exist

x, y, z ∈ S such that e1 violates the ultrametric inequality; that is,

max{e1(x, z), e1(z, y)} < e1(x, y).

This is equivalent to

sup{e(x, y) | e ∈ Ud}

> max{sup{e(x, z) | e ∈ Ud},

sup{e(z, y) | e ∈ Ud}}.

Thus, there exists ê ∈ Ud such that

ê(x, y) > sup{e(x, z) | e ∈ Ud}

and

ê(x, y) > sup{e(z, y) | e ∈ Ud}.

In particular, ê(x, y) > ê(x, z) and ê(x, y) > ê(z, y), which contradicts the fact

that ê is an ultrametric.

The ultrametric defined by Theorem 2.1.5 is known as the maximal subdominant

ultrametric for the dissimilarity d.
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The situation is not symmetric with respect to the infimum of a set of ultramet-

rics because, in general, the infimum of a set of ultrametrics is not necessarily an

ultrametric.

2.2 The Metric Space of Partitions of a Finite Set

Properties of generalized entropy defined on partition lattices were explored in [74].

Unless stated otherwise all sets are supposed to be finite.

Definition 2.2.1. A partition of a set S is a non-empty collection of pairwise dis-

joint and non-empty subsets of S referred to as blocks, π = {B1, . . . , Bn} such that⋃n
i=1Bi = S. The set of partitions of a set S is denoted by PART(S); the set of

partitions of S having n blocks is denoted by PARTn(S).

Definition 2.2.2. If π, σ ∈ PART(S), we write π 6 σ if every block of σ is a union

of blocks of π. The relation “6” is a partial order on PART(S) having ιS = {{x} |

x ∈ S} as its least element and ωS = {S} as its largest element, so ιS 6 π 6 ωS for

π ∈ PART(S).

The partially ordered set (S,6) is a lattice, where π∧σ = {Bi∩Cj | Bi ∈ π,Cj ∈

σ and Bi ∩ Cj 6= ∅}. The other lattice operation, π ∨ σ has a more complicated

description that can be found, for example, in [74].

The partition σ covers the partition π (denoted by π ≺ σ) if π 6 σ and there is

no partition τ distinct from π and σ such that π 6 τ 6 σ. It is known (see [17]) that

π ≺ σ if and only if σ is obtained from π by fusing two blocks of π. Of course, if

π 6 σ, there exists a chain of partitions τ0, τ1, . . . , τn such that π = τ0, τi ≺ τi+1 for

0 6 i 6 n− 1 and τn = σ.

If π = {B1, . . . , Bn} ∈ PART(S) and C ⊆ S, the trace of π on C is the partition

πC ∈ PART(C) given by πC = {Bi ∩C | Bi ∈ π and Bi ∩C 6= ∅}. Note that we have

π 6 σ if and only if σB = ωB for every block B of π.
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Definition 2.2.3. If π = {B1, . . . , Bn} is a partition of a set S and β > 0, then its

β-entropy (introduced in [24, 38]), Hβ, is given by:

Hβ(π) =
1

1− 21−β

(
1−

n∑
i=1

(
|Bi|
|S|

)β)
. (2.1)

It is immediate that Hβ(ωS) = 0.

Note that for β = 2, we obtain the well-known Gini index

H2(π) = 2

(
1−

n∑
i=1

(
|Bi|
|S|

)2
)
.

and when β → 1,

lim
β→1

Hβ = −
n∑
i=1

|Bi|
|S|

log
|Bi|
|S|

as it can be verified immediately by applying l’Hôpital rule.

Thus, the Shannon entropy denoted by H is a limit case of the generalized entropy.

Although in most cases we use the Shannon entropy, the β-entropy is important for

determining the number of clusters for imbalanced data sets.

Definition 2.2.4. Let hβ : [0, 1] −→ R. Define

hβ(x) =
x− xβ

1− 21−β ,

where β > 0 and β 6= 1.

Theorem 2.2.5. hβ is a concave function for β > 0 and β 6= 1.

Proof. Since h′′β(x) = −β(β−1)xβ−2

1−21−β , it follows that h′′β(x) 6 0 because 1 − 21−β > 0

when β > 1, and 1 − 21−β 6 0 when β 6 1. Therefore, hβ is a concave function for

β > 0 and β 6= 1.
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Figure 2.1: Behavior of Function hβ(x) with different β

We have hβ
(
1
2

)
= 1

2
; the maximum of hβ on the [0, 1] interval is achieved at

xβ = β−
1

β−1 and equals β−1
1−21−β β

− β
β−1 . The behavior of function with different β is

shown in Figure 2.1. The function hβ is subadditive for every β ∈ (0, 1)∪ (1,∞), that

is,

hβ(x+ y) 6 hβ(x) + hβ(y)

for x, y ∈ [0, 1]. Observe that limβ→1 hβ(x) = x log2
1
x
.

Since

Hβ(π) =
1

1− 21−β

(
1−

n∑
i=1

(
|Bi|
|S|

)β)

=
n∑
i=1

hβ

(
|Bi|
|S|

)
,

the concavity of hβ implies that the maximum value of Hβ(π) is achieved when |B1| =

· · · = |Bn| and is equal to 1
1−21−β

(
1− n1−β). Thus, the maximal value of Hβ(π) is
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obtained when π = ιS and it is equal to 1
1−21−β

(
1− |S|1−β

)
. Note that the minimal

value of Hβ(π) is achieved when π = ωS, Hβ(ωS) = 0 and Hβ(π) = 0 implies π = ωS.

Let {S1, . . . , Sn} be a partition of the set S and let π1, . . . , πn be n partitions such

that πi ∈ PART(Si) for 1 6 i 6 n. Define the partition π1 + · · ·+ πn as the partition

of S that consists of all blocks of π1, . . . , πn. Then,

Hβ(π1 + . . .+ πn) = Hβ({S1, . . . , Sn})

+
n∑
i=1

(
|Si|
|S|

)β
Hβ(πi).

If π = {B1, . . . , Bm} and let σ = {C1, . . . , Cn} are two partitions in PART(S), then

Hβ(π ∧ σ) = Hβ(σ) +
m∑
j=1

(
|Cj|
|S|

)β
Hβ(πCj)

= Hβ(π) +
n∑
i=1

(
|Bi|
|S|

)β
Hβ(σBi).

Definition 2.2.6. The conditional β-entropy Hβ(π|σ) is defined as

Hβ(π|σ) = Hβ(π ∧ σ)−Hβ(σ).

The β-entropy is anti-monotonic, that is, for β ∈ R>0 − {1} and π, σ ∈ PART(S),

π 6 σ implies Hβ(σ) 6 Hβ(π). The conditional β-entropy Hβ(π|σ) is anti-monotonic

in its first argument and monotonic in its second, that is π1 6 π2 implies Hβ(π1|σ) >

Hβ(π2|σ) and σ1 6 σ2 implies Hβ(π|σ1) > Hβ(π|σ2).

Theorem 2.2.7. the function dβ : PART(S)× PART(S) −→ R defined by

dβ(π, σ) = Hβ(π|σ) +Hβ(σ|π)

is a metric on PART(S).
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The result is obtained and proved in [75] (which is a generalization of a result

of [25]). This function will be used to evaluate distance between clusterings regarded

as sets of objects.

18



CHAPTER 3

DATA ULTRAMETRICITY AND CLUSTERABILITY

In this chapter, we introduce two definitions of ultrametricity and utilize the

second one to formalize the definition of clusterability. Then we test the validity of

our definition on both synthetic and real data sets.

3.1 Introduction

A data set is clusterable if such groups exist; however, due to the variety in data

distributions and the inadequate formalization of certain basic notions of clustering,

determining data clusterability before applying specific clustering algorithms is a

difficult task.

Evaluating data clusterability before the application of clustering algorithms can

be very helpful because clustering algorithms are expensive. However, many such

evaluations are impractical because they are NP-hard, as shown in [3]. Other notions

define data as clusterable when the minimum between-cluster separation is greater

than the maximum intra-cluster distance [28], or when each element is closer to all

elements in its cluster than to all other data [12].

Several approaches exist in assessing data clusterability. The main hypothesis

of [1] is that clusterability can be inferred from an one-dimensional view of pairwise

distances between objects. Namely, clusterability is linked to the multimodality of the

histogram of inter-object dissimilarities. The basic assumption is that “the presence

of multiple modes in the set of pairwise dissimilarities indicates that the original data

is clusterable.” Multimodality is evaluated using the Dip and Silverman statistical

multimodality tests, an approach that is computationally efficient.
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Alternative approaches to data clusterability are linked to the feasibility of pro-

ducing a clustering; a corollary of this assumption is that “data that are hard to

cluster do not have a meaningful clustering structure” [23]. Other approaches to

clusterability are identified based on clustering quality measures, and on loss func-

tion optimization [3, 15, 2, 14, 12, 16].

We propose a novel approach that relates data clusterability to the extent to which

the dissimilarity defined on the data set relate to a special ultrametric defined on the

set.

This chapter is structured as follows. In Section 3.2, we introduced a defini-

tion of ultrametricity by measuring the power of distance value. After it, a faster

version of calculating this ultrametricity is also given in Section 3.3. The next sec-

tion(Section 3.4) shows a special matrix product on matrices with non-negative ele-

ments that allow an efficient computation of the subdominant ultrametric. We utilize

the number of product to reach ultrametric as the other measure of ultrametricity.

In Section 3.5, resort to the concept of ultrametricity in previous section, a measure

of clusterability that is based on the iterative properties of the dissimilarity matrix is

defined. We provide experimental evidence on the effectiveness of the proposed mea-

sure through several experiments on small artificial data sets in Section 3.6. Finally,

we present our conclusions and future plans in Section 3.7.

3.2 Measure the Ultrametricity of Dissimilarity

Let r be a non-negative number and let Dr(S) be the set of dissimilarities defined

on a set S that satisfy the inequality d(x, y)r 6 d(x, z)r+d(z, y)r for x, y, z ∈ S. Note

that every dissimilarity belongs to the set D0; a dissimilarity in D1 is a quasi-metric.

Theorem 3.2.1. Let (S, d) be a dissimilarity space and let D∞(S) =
⋂
r>0Dr(S). If

d ∈ D∞(S), then d is an ultrametric on S.
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Proof. Let d ∈ D∞ and let t = xyz be a triangle in the dissimilarity space (S, d).

Assume that d(x, y) > d(x, z) > d(z, y).

Suppose intially that d(x, z) = d(y, z). Then, d ∈ Dr(S) implies that d(x, y)r 6

2d(x, z)r, so (
d(x, y)

d(x, z)

)r
6 2

for every r > 0. By taking r → ∞ it is clear that this is possible only if d(x, y) 6

d(x, z), which implies d(x, y) = d(x, z) = d(y, z); in other words, t is an equilateral

triangle.

The alternative supposition is that d(x, z) > d(y, z). Again, since d ∈ Dr(S), it

follows that

d(x, y) 6 (d(x, z)r + d(z, y)r)
1
r

= d(x, z)

(
1 +

(
d(z, y)

d(x, z)

)r) 1
r

for every r > 0. Since limr→∞ d(x, z)
(

1 +
(
d(y,z)
d(x,z)

)r) 1
r

= d(x, z), it follows that

d(x, y) 6 d(x, z) for x, y, z ∈ S. This inequality implies d(x, y) = d(x, z), so the

largest two sides of the triangle xyz are equal. This allows us to conclude that d is

an ultrametric.

It is easy to verify that if r and s are positive numbers, then r 6 s implies

(d(x, z)r + d(z, y)r)
1
r > (d(x, z)s + d(z, y)s)

1
s (see [74], Lemma 6.15). Thus, if r 6 s

we have the inclusion Ds ⊆ Dr.

Let d and d′ be two dissimilarities defined on a set S. We say that d′ dominates

d if d(x, y) 6 d′(x, y) for every x, y ∈ S. The pair (DISS(S),6) is a partially ordered

set.

Let r, s be two positive numbers such that r < s, and let d ∈ Dr(S). The family

Ds,d(S) of s-dissimilarities on S that are dominated by d has a largest element.
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Indeed, since every element of Ds,d(S) is dominated by d, we can define the map-

ping ẽ : S × S −→ R>0 as ẽ(x, y) = sup{e(x, y) | e ∈ Ds,d(S)}. It is immedi-

ate that e is a dissimilarity on S and that ẽ 6 d. Moreover, we have e(x, y)s 6

e(x, z)s + e(z, y)s 6 ẽ(x, z)s + ẽ(z, y)s for every x, y, z ∈ S, which implies

ẽ(x, y)s 6 ẽ(x, z)s+ < ẽ(z, y)s.

Thus, ẽ ∈ Ds,d(S), which justified our claim.

For r > 0 define the function Fr : R2
geqs0 −→ R>0 as Fr(a, b) = (ar + br)

1
r . It is

straighforward to see that p > q implies Fp(a, b) 6 Fq(a, b) for a, b ∈ R>0. Furthermore

for r > 0 we have d ∈ Dr(S) if and only if d(x, y) 6 Fr(d(x, z), d(z, y)).

Definition 3.2.2. Let r, s be two positive numbers. An (r, s)-transformation is a

function g : R>0 −→ R>0 such that

(i) g(x) = 0 if and only if x = 0;

(ii) g is continuous and strictly monotonic on R>0;

(iii) g(Fr(a, b)) 6 Fs(g(a), g(b)) for a, b ∈ R>0.

Note that if d ∈ Dr(S) and g is an (r, s)-transformation, then gd ∈ Ds(S).

3.3 A Weaker Dissimilarity Measure

The notion of weak ultrametricity that we are about to introduce has some com-

putational advantages over the notion of ultrametricity, especially from the point of

view of handling transformations of metrics.

Let (S, d) be a dissimilarity space and let t = xyz be a triangle. Following Ler-

man’s notation [47], we write Sd(t) = d(x, y),Md(t) = d(x, z), and Ld(t) = d(y, z), if

d(x, y) > d(x, z) > d(y, z).
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Definition 3.3.1. Let (S, d) be a dissimilarity space and let t = xyz ∈ S3 be a

triangle.

The ultrametricity of t is the number ud(t) defined by

ud(t) = max{r > 0 | Sd(t)r 6Md(t)
r + Ld(t)

r},

which is the ultrametricity of the subspace ({x, y, z}, d) of (S, d). If d ∈ Dp, we have

p 6 ud(t) for every t ∈ S3.

The weak ultrametricity of the triangle t, wd(t), is given by

wd(t) =


1

log2
Sd(t)

Md(t)

if Sd(t) > Md(t)

∞ if Sd(t) = Md(t).

If wd(t) =∞, then t is an ultrametric triple.

The weak ultrametricity of the dissimilarity space (S, d) is the number w(S, d)

defined by

w(S, d) = median{wd(t) | t ∈ S3}.

The definition of w(S, d) eliminates the influence of triangles whose ultrametricity

is an outlier, and gives a better picture of the global ultrametric property of (S, d).

For a triangle t we have

0 6 Sd(t)−Md(t) =
(

2
1

wd(t) − 1
)
Md(t) 6

(
2

1
w(S,d) − 1

)
Md(t)

Thus, if wd(t) is sufficiently large, the triangle t is almost isosceles. For example, if

wd(t) = 5, the difference between the length of longest side Sd(t) and the median side

Md(t) is less than 15%.
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For every triangle t ∈ S3 in a dissimilarity space we have ud(t) 6 wd(t). Indeed,

since Sd(t)
ud(t) 6 Md(t)

ud(t) + Ld(t)
ud(t) we have Sd(t)

ud(t) 6 2Md(t)
ud(t), which is

equivalent to ud(t) 6 wd(t).

Next we discuss dissimilarity transformations that impact the ultrametricity of

dissimilarities.

Theorem 3.3.2. Let (S, d) be a dissimilarity space and let f : R>0 −→ R>0 be a

function that satisfies the following conditions:

(i) f(0) = 0;

(ii) f is increasing;

(iii) the function g : R>0 −→ R>0 given by

g(a) =


f(a)
a

if a > 0,

0 if a = 0

is decreasing.

Then the function e : S × S −→ R>0 defined by e(x, y) = f(d(x, y)) for x, y ∈ S is a

dissimilarity and wd(t) 6 we(t) for every triangle t ∈ S3.

Proof. Let t = xyz ∈ S3 be a triangle. It is immediate that e(x, y) = e(y, x) and

e(x, x) = 0.

Since f is an increasing function we have f(Sd(t)) > f(Md(t)) > f(Ld(t)), so the

ordering of the sides of the tranformed triangle is preserved.
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Since g is a decreasing function, we have g(Sd(t)) 6 g(Md(t)), that is, f(Sd(t))
Sd(t)

6

f(Md(t))
Md(t)

, or

Sd(t)

Md(t)
>

f(Sd(t))

f(Md(t))
.

Therefore,

wd(t) =
1

log2
Sd(t)
Md(t)

6
1

log2
Se(t)
Me(t)

= we(t).

Example 3.3.3. Let (S, d) be a dissimilarity space and let e be the dissimilarity

defined by e(x, y) = d(x, y)r, where 0 < r < 1. If f(a) = ar, then f is increasing and

f(0) = 0. Furthermore the function g : R>0 −→ R>0 given by

g(a) =


f(a)
a

if a > 0,

0 if a = 0

=


ar−1 if a > 0,

0 if a = 0

is decreasing. Therefore, we have we(t) > wd(t).

Example 3.3.4. Let f : R>0 −→ R>0 be defined by f(a) = a
a+1

. It is easy to see that

f is increasing on R>0, f(0) = 0, and

g(a) =


1

1+a
if a > 0,

0 if a = 0

is decreasing on the same set. Therefore, the weak ultrametricity of a triangle in-

creases when d is replaced by e given by

e(x, y) =
d(x, y)

1 + d(x, y)

for x, y ∈ S.
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Example 3.3.5. For a dissimilarity space (S, d), the Schoenberg transform of d de-

scribed in [26] is the dissimilarity e : S2 −→ R>0 defined by

e(x, y) = 1− e−kd(x,y)

for x, y ∈ S. Let f : R>0 −→ R> be the function f(a) = 1− e−ka that is used in this

transformation. It is immediate that f is a increasing function and f(0) = 0. For

a > 0 we have g(a) = 1−e−ka
a

, which allows us to write

g′(a) =
e−ka(ka+ 1)− 1

a2

for a > 0. Taking into account the obvious inequality ka + 1 < eka for k > 0, it

follows that the function g is decreasing. Thus, the weak ultrametricity of a triangle

relative to the Schoenberg transform is greater than the weak ultrametricity under

the original dissimilarity.

3.4 Matrices Product and Ultrametricity

Let P be the set

P = {x | x ∈ R, x > 0} ∪ {∞}.

The usual operations defined on R can be extended to P by defining

x+∞ =∞+ x =∞, x · ∞ =∞ · x =∞

for x > 0.

Let Pm×n be the set of m × n matrices over P. If A,B ∈ Pm×n we have A 6 B if

aij 6 bij that is, if aij > bij for 1 6 i 6 m and 1 6 j 6 n.
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If A ∈ Pm×n and B ∈ Pn×p the matrix product C = AB ∈ Pm×p is defined as:

cij = min{max{aik, bkj} | 1 6 k 6 n},

for 1 6 i 6 m and 1 6 j 6 p.

If En ∈ Pn×n is the matrix defined by

(En)ij =


0 if i = j,

∞ otherwise,

that is the matrix whose main diagonal elements are 0 and the other elements equal

∞, then AEn = A for every A ∈ Pm×n and EnA = A for every A ∈ Pn×p.

The matrix multiplication defined above is associative, hence Pn×n is a semigroup

with the identity En. The powers of A are inductively defined as

A0 = En,

An+1 = AnA,

for n ∈ N.

For A,B ∈ Pm×n we define A 6 B as aij 6 Bij for 1 6 i 6 m and 1 6 j 6 n. Note

that if A ∈ Pn×n, then A 6 En. It is immediate that for A,B ∈ Pm×n and C ∈ Pn×p,

then A 6 B implies AC 6 BC; similarly, if C ∈ Pp×m and CA 6 CB.

Let L(A) be the finite set of elements in P that occur in the matrix A ∈ Pn×n.

Since he entries of any power An of A are also included in L(A), the sequence

A,A2, . . . , An, . . . is ultimately periodic because it contains a finite number of dis-

tinct matrices.
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Let k(A) be the least integer k such that Ak = Ak+d for some d > 0. The sequence

of powers of A has the form

A,A2, . . . , Ak(A)−1, Ak(A), . . . ,

Ak(A)+d−1, Ak(A), . . . , Ak(A)+d−1, . . . ,

where d is the least integer such that Ak(A) = Ak(A)+d. This integer is denoted by

d(A).

The set {Ak(A), . . . , Ak(A)+d−1} is a cyclic group with respect to the multiplication.

If (S, d) is a dissimilarity space, where S = {x1, . . . , xn}, the matrix of this space

is the matrix A ∈ Pn×n defined by aij = d(xi, xj) for 1 6 i, j 6 n. Clearly, A is a

symmetric matrix and all its diagonal elements are 0, that is, A 6 En.

If, in addition, we have aij 6 aik + akj for 1 6 i, j, k 6 n, then A is a metric

matrix. If this condition is replaced by the stronger condition aij 6 max{aik + akj}

for 1 6 i, j, k 6 n, then A is ultrametric matrix. Thus, for an ultrametric matrix we

have aij 6 min{max{aik + akj} | 1 6 k 6 n}. This amounts to A2 6 A.

Theorem 3.4.1. If A ∈ Pn×n is a dissimilarity matrix there exists m ∈ N such that

· · · = Am+1 = Am 6 · · · 6 A2 6 A 6 En

and Am is an ultrametric matrix.

Proof. Since A 6 En, the existence of the number m with the property mentioned in

the theorem is immediate since there exists only a finite number of n × n matrices

whose elements belong to L(A). Since Am = A2m, it follows that Am is an ultrametric

matrix.

For a matrix A ∈ Pn×n let m(A) be the least number m such that Am = Am+1.

We refer to m(A) as the stabilization power of the matrix A. The matrix Am(A) is

denoted by A∗.
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The previous considerations suggest defining the ultrametricity of a matrix A ∈

Pn×n with A 6 En as u(A) = n
m(A)

. Since m(A) 6 n, it follows that u(A) > 1. If

m(A) = 1, A is ultrametric itself and u(A) = n.

Theorem 3.4.2. Let (S, d) be a dissimilarity space, where S = {x1, . . . , xn} having

the dissimilarity matrix A ∈ Pn×n. If m is the least number such that Am = Am+1,

then the mapping δ : S × S −→ P defined by δ(xi, xj) = (Am)ij is the subdominant

ultrametric for the dissimilarity d.

Proof. As we observed, Am is an ultrametric matrix, so δ is an ultrametric on S.

Since Am 6 A, it follows that d(xi, xj) > δ(xi, xj) for all xi, xj ∈ S.

Suppose that C ∈ Pn×n is an ultrametric matrix such that A 6 C, which implies

Am 6 Cm 6 C. Thus, Am dominates any ultrametric that is dominated by d.

Consequently, the dissimilarity defined by Am is the subdominant ultrametric for

d.

The subdominant ultrametric of a dissimilarity is usually studied in the framework

of weighted graphs [46].

A weighted graph is a triple (V,E,w), where V is the set of vertices of G, E is a

set of two-element subsets of V called edges. and w : E −→ P is the weight of the

edges. If e ∈ E, then e = {u, v}, where u, v are distinct vertices in V . The weight is

extended to all 2-elements subsets of V as

w({vi, vj}) =


w({vi, vj}) if {vi, vj} ∈ E,

∞ otherwise.

A path of length n in a weighted graph is a sequence

℘ = (v0, v1, , v2, . . . , vn−1, vn),

where {vi, vi+1} ∈ E for 0 6 n 6 n− 1.
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The set of paths of length n in the graph G is denoted as Pathsn(G). The set of

paths of length n that join the vertex vi to the vertex vj is denoted by Pathsnij. The

set of all paths is

Paths(G) =
⋃
n>1

Pathsn(G).

For a weighted graph G = (V,E,w), the extension of the weight function w to

Pathsn(G) is the function M : Paths(G) −→ P defined as

M(℘) = max{w(vi−1, vi) | 1 6 i 6 n},

where ℘ = (v0, v1, . . . , vn). Thus, if ℘′ = ℘e, we have M(℘′) = max{M(℘), w(e)}.

If G = (V,E,w) is a weighted graph, its incidence matrix is the matrix AG ∈ Pn×n,

where n = |V |, defined by (AG)ij = w(vi, vj) for 1 6 i, j 6 n.

Let P
(`)
ij be the set of paths of length ` that join the vertex vi to the vertex vj.

Note that

P
(`+1)
ij = {(vi, . . . , vk, vj) |

℘ = (vi, . . . , vk) ∈ P (`)
ik and

vj does not occur in ℘}.

Define a
(`)
ij = min{M(℘) | ℘ ∈ P (`)

ij }. The powers of the incidence matrix of the

graph are given by

a
(`+1)
ik = min{M(℘′) | ℘′ ∈ P (`+1)

ik }

= min{max{M(℘), w(e)} |

℘′ = (vi, . . . , vj, vk) and

℘ ∈ P (`)
ij , e = (vj, vk) ∈ E}

= min
j
{max{a`ij, w(e)} | e = (vj, vk)}.
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Thus, we have

(A`G)ij = min{M(℘) | ℘ ∈ P `
ij}

for 1 6 i, j 6 n.

3.5 A Measure of Clusterability

We conjecture that a dissimilarity space (D, d) is more clusterable if the dissimi-

larity is closer to an ultrametric, hence if m(AD) is small. Thus, it is natural to define

the clusterability of a data set D as the number clust(D) = n
m(AD)

where n = |D|, AD

is the dissimilarity matrix of D and m(AD) is the stabilization power of AD. The

lower the stabilization power, the closer A is to an ultrametric matrix, and thus, the

higher the clusterability of the data set.

Table 3.1: All clusterable datasets have values greater than 5 for their clusterability;
all non-clusterable datasets have values no larger than 5.

Dataset n Dip Silv. m(AD) clust(D)
iris 150 0.0000 0.0000 14 10.7
swiss 47 0.0000 0.0000 6 7.8
faithful 272 0.0000 0.0000 31 8.7
rivers 141 0.2772 0.0000 22 6.4
trees 31 0.3460 0.3235 7 4.4
USAJudgeRatings 43 0.9938 0.7451 10 4.3
USArrests 50 0.9394 0.1897 15 3.3
attitude 30 0.9040 0.9449 6 5
cars 50 0.6604 0.9931 15 3.3

Our hypothesis is supported by previous results obtained in [1], where the cluster-

ability of 9 databases were statistically examined using the Dip and Silverman tests

of unimodality. The approach used in [1] starts with the hypothesis that the presence

of multiple modes in the uni-dimensional set of pairwise distances indicates that the

original data set is clusterable. Multimodality is assessed using the tests mentioned

above. The time required by this evaluation is quadratic in the number of objects.
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The first four data sets, iris, swiss, faithful and rivers were deemed to be clus-

terable; the last five were evaluated as not clusterable. Tests published in [5] have

produced low p-values for the first four datasets, which is an indication of cluster-

ability. The last five data sets, USArrests, attitude, cars, and trees produce much

larger p-values, which show a lack of clusterability. Table 3.1 shows that all data sets

deemed clusterable by the unimodality statistical test have values of the clusterability

index that exceed 5.

In our approach clusterability of a data set D is expressed primarily through

the “stabilization power” m(AD) of the dissimilarity matrix AD; in addition, the

histogram of the dissimilarity values is less differentiated when the data is not clus-

terable.

3.6 Experimental Evidence on Small Artificial Data Sets

Another series of experiments involved a series of small datasets having the same

number of points in R2 arranged in lattices. The points have integer coordinates and

the distance between points is the Manhattan distance.

By shifting the data points to different locations, we create several distinct struc-

tured clusterings that consists of rectangular clusters.

Figures 3.2 and 3.3 show an example of a series of datasets with a total of 36

data points. Initially, the data set has 4 rectangular clusters containing 9 data points

each with a gap of 3 distance units between the clusters. The ultrametricity of the

dataset and, therefore, its clusterability is affected by the number of clusters, the size

of the clusters, and the inter-cluster distances. Figure 3.3 shows that m(A) reaches

its highest value and, therefore, the clusterability is the lowest, when there is only

one cluster in the dataset (see the third row of Figure 3.3).

If points are uniformly distributed, as it is the case in the third row of Figure 3.3,

the clustering structure disappears and clust(D) has the lowest value.
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Original dataset

Histogram of original Histogram after one multiplication

Histogram after two multiplications Histogram after three multiplications

Figure 3.1: The process of distance equalization for successive powers of the incidence
matrix. The matrix A3

D is ultrametric.
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Lattice with k = 4 Histogram for k = 4 m(AD) = 3, clust(D) = 12

Lattice with k = 6 Histogram for k = 6 m(AD) = 4, clust(D) = 9

Lattice with k = 3 Histogram for k = 3 m(AD) = 5, clust(D) = 7.2

Figure 3.2: Cluster separation and clusterability.
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Lattice dataset with k = 4 Histogram for k = 4 m(AD) = 5, clust(D) = 7.2

Lattice dataset with k = 2 Histogram for k = 2 m(AD) = 7, clust(D) = 5.1

Lattice dataset with k = 1 Histogram for k = 1 m(AD) = 9, clust(D) = 4

Figure 3.3: Cluster separation and clusterability (continued).

Lattice dataset with k = 9 k = 9 m(AD) = 6, clust(D) = 6

Figure 3.4: Further examples of data sets and their clusterability.
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Histograms are used by some authors [3, 15] to identify the degree of clusterabil-

ity. Note however that in the case of the data shown in Figures 3.2 and 3.3, the

histograms of original dissimilarity of the dataset do not offer guidance on the clus-

terability(second column of Figure 3.2 and 3.3). By applying the “min-max” power

operation on the original matrix, we get an ultrametric matrix. The new histogram

of the ultrametric shows a clear difference on each dataset. In the third column of

Figures 3.2 and 3.3, the histogram of the ultrametric matrix for each dataset shows

a decrease of the number of distinct distances after the “power” operation.

If the dataset has no clustering structure the histogram of the ultrametric distance

has only one bar.

The number of pics p of the histogram indicate the minimum number of clusters

k in the ultrametric space specified by the matrix A∗ using the equality
(
k
2

)
= p, so

the number of clusters is
⌈
1+
√
1+8p
2

⌉
. The largest k values of valleys of the histogram

indicate the radii of the spheres in the ultrametric space that define the clusters.

If a data set contains a large number of small clusters, these clusters can be

regarded as outliers and the clusterability of the data set is reduced. This is the case

in the third line of Figure 3.4 which shows a particular case for 9 clusters with 36 data

points. Since the size of each cluster is too small to be considered as a real cluster,

all of them together are merely regarded as a one cluster dataset with 9 points.

3.7 Conclusions and Future Work

The special matrix powers of the adjacency matrix of the weighted graph of object

dissimilarities provide a tool for computing the subdominant ultrametric of a dissim-

ilarity and an assessment of the existence of an underlying clustering structure in a

dissimilarity space.
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The “power” operation successfully eliminates the redundant information in the

dissimilarity matrix of the dataset but maintains the useful information that can

discriminate the cluster structures of the dataset.

In a series of seminal papers[62, 63, 64], F. Murtagh argued that as the dimension-

ality of a linear metric space increases, an equalization process of distances takes place

and the metric of the space gets increasingly closer to an ultrametric. This raises the

issues related to the comparative evaluation (statistical and algebraic) of the ultra-

metricity of such spaces and of their clusterability, which we intend to examine in the

future.
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CHAPTER 4

CLUSTERING WITH ULTRAMETRIC-ADJUSTED
DISSIMILARITY MATRIX

In this chapter, we modify the dissimilarity matrix in order to change its ultra-

metricity, depending on which of the definitions we proposed in Chapter 3 we use.

For the first definition of ultrametricity, we evaluate the variation in compactness

and separation of clustering results as we increase or decrease the ultrametricity of

the dissimilarity matrix. We show that a modification of the ultrametricity of the

dissimilarity matrix can improve the clustering quality of some data sets. The other

definition of ultrametricity which is measured through the special matrix product is

also evaluated on some difficult data sets. We demonstrate that by increasing the

ultrametricity of the dissimilarity matrix, we can improve the performances of some

traditional clustering algorithms compared to their performances on the original dis-

similarity matrix.

4.1 Improved Clustering Results with Altered Dissimilarity

Matrix

Clustering validation evaluates and assesses the goodness of the results of a clus-

tering algorithm [58]. We used internal validation measures that rely on information

in the data [78], namely and compactness and separation [78, 87].

Compactness measures quantify how well-related the objects in a cluster are. It

provides information about the cohesion of objects in an individual cluster with re-

spect to the other objects outside the cluster. A group of measures evaluate cluster

compactness based on variance where lower values indicate better compactness. Other
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measures are based on distance, such as maximum or average pairwise distance, and

maximum or average center-based distance.

Separation is a measure of distinctiveness between a cluster and the rest of the

world. The pairwise distances between cluster centers or the pairwise minimum dis-

tances between objects in different clusters are often used as measures of separation.

The compactness of each cluster was evaluated using the average dissimilarity

between the observations in the cluster and the medoid of the cluster. Separation

was computed using the minimal dissimilarity between an observation of the cluster

and an observation of another cluster.

Based on the definition of ultrametricity in Section 3.2 of Chapter 3, we investigate

the impact of this ultrametricity on compactness and separation of clusters by using

the Partition Around Medoids (PAM) algorithm [43] to cluster objects originally in

the Euclidean Space and later in a transformed dissimilarity space with lower or

higher ultrametricity.

Experiments show that a transformation on the distance matrix that decreases the

ultrametricity of the original Euclidean space can actually improve compactness but

also decrease separation of the clusters generated by PAM. However, the compactness

improves at a faster ratio than the decrease in separation. We also observed that the

increase of ultrametricity produces the reverse effect, degrading compactness and

increasing separation, at different ratios. In this case, compactness decreases in a

faster ratio than the increase in separation.

Let (S, d) be a dissimilarity space, (S, d′) be the transformed dissimilarity space,

where d′ = f(d) is obtained by applying one of the transformations described in

Section 3.2 and let u and u′ be the weak ultrametricities of these two dissimilarity

spaces, respectively.

The increase of ultrametricity from (S, d) to (S, d′) promotes the equalization

of dissimilarity values. In the extreme case, we have an ultrametric space where
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the pairwise distances involved in all triplets of points form an equilateral or isosceles

triangle. To explore how the equalization (or the reverse process) may affect clustering

quality, a better study of the effects of increased (or decreased) ultrametricity on the

results generated by a widely known and robust clustering algorithm was performed.

In order to study the impact of ultrametricity on cluster compactness and sepa-

ration, we have implemented an algorithm that runs PAM on the original and trans-

formed spaces, and computes those measure for each cluster from S and S ′.

Our experiments considered a initial Euclidean space (S, d) where S corresponds

to a set of objects and d to the Minkowski distance with exponent 2. To obtain a

valid comparison of compactness and separation, the clusters obtained from a specific

data set S must contain the same elements in the original and transformed spaces.

Dissimilarities dx where x > 1 tend to decrease the ultrametricity of the original

space, whereas dissimilarities where 0 < x < 1 tend to increase ultrametricity.

(a) Well Separated (b) Different Density (c) Skewed Distribution

Figure 4.1: Synthetic data containing 3 different data aspects: good separation, dif-
ferent density and skewed distributions

Current existing clustering validation measures and criteria can be affected by

various data characteristics [53]. For instance, data with variable density is chal-

lenging for several clustering algorithms. It is known that k-means suffers from an

uniformizing effect which tends to divide objects into relatively equal sizes [85]. Like-

wise, k-means and PAM do not have a good performance when dealing with skewed

distribution data sets where clusters have unequal sizes. To determine the impact
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of ultrametricity in the presence of any of those characteristics, experiments were

carried considering 3 different data aspects: good separation, density, and skewed

distributions in three synthetic data sets named WellSeparated, DifferentDensity and

SkewDistribution, respectively.

Figure 4.1 shows the synthetic data that was generated for each aspect. Each data

set contains 300 objects.

Tables 4.1 shows the results for data sets WellSeparated, DifferentDensity and

SkewDistribution, respectively. The measure (compactness or separation) ratio is

computed dividing the transformed space measure by the original space measure.

The average measure ratio computed for the 3 clusters is presented in each table.

Note that the average measure ratio is less than one for spaces with lower ultra-

metricity (obtained with dissimilarities d5 and d10). In this case, the average compact-

ness ratio is also lower than the average separation ratio, showing that the transforma-

tions generated intra-cluster dissimilarities that shrunk more than the inter-cluster

ones, relatively to the original dissimilarities. In spaces with higher ultrametricity

(obtained with dissimilarities d0.1 and d0.01), the average measure ratio is higher than

one. The average compactness ratio is also higher than the average separation ratio,

showing that the transformations generated intra-cluster dissimilarities that expanded

more than the inter-cluster ones. This explains the equalization effect obtained with

the increase in ultrametricity.

Figures 4.2a, 4.2b and 4.2c show the relation between compactness and a separa-

tion ratio for each data set.

In Figure 4.2 we show the relationship between compactness and separation ra-

tio for the three synthetic data sets and for the Iris data set which exhibit similar

variation patterns.

As previously mentioned, data with characteristics such as different density and

different cluster sizes might impose a challenge for several clustering algorithms.
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Diss. Compactness Compactness Compactness Normalized
Avg. Std. Ratio Avg. Mutual Info.

d 0.1298267265 0.0364421138 1 1

d10 7.4595950908E-009 9.0835007432E-009 5.7458085055E-008 1

d5 0.000048905 4.3815641482E-005 0.0003766941 1

d0.1 0.8231766265 0.0254415565 6.3405790859 1

d0.01 0.9722292326 0.0030358862 7.4886678515 1

Compactness and Clustering quality results for a data set with well-separated clusters

Diss. Separation Separation Separation
Avg. Std. Ratio Avg.

d 0.5904521462 0.339733487 1

d10 0.0020607914 0.0035682378 0.0034901921

d5 0.0473640032 0.0795298042 0.0802164976

d0.1 0.9752251248 0.0521762794 1.6516581929

d0.01 0.9979573861 0.0052696787 1.6901579451

Separation results for a data set with well-separated clusters

Diss. Compactness Compactness Compactness Normalized
Avg. Std. Ratio Avg. Mutual Info.

d 0.2599331876 0.0225831458 1 0.4179803376

d10 1.7193980983E-009 8.1299728150E-010 6.6147694106E-009 0.4413622617

d5 4.4663622551E-005 7.7685178838E-006 0.0001718273 0.4197247625

d0.1 0.8942911252 0.0073467836 3.4404653496 0.4186734225

d0.01 0.9729198463 0.0174965529 3.7429612403 0.4186734225

Compactness and Clustering quality results for a data set with clusters with varied densities

Diss. Separation Separation Separation
Avg. Std. Ratio Avg.

d 0.8716430647 1.4832867815 1

d10 0.0244453421 0.0423405745 0.0280451288

d5 0.2484825264 0.4303843596 0.2850737147

d0.1 0.8400992968 0.2757718021 0.9638111411

d0.01 0.9777162094 0.0325513479 1.1216933272

Separation results for a data set with clusters with varied densities

Diss. Compactness Compactness Compactness Normalized
Avg. Std. Ratio Avg. Mutual Info.

d 0.1072664803 0.098564337 1 1

d10 0.000000449 7.7773337902E-007 4.1860674698E-006 1

d5 0.0002096486 0.0003626508 0.0019544651 1

d0.1 0.7880494471 0.0792970382 7.3466514879 1

d0.01 0.9633479044 0.0171811278 8.9808848178 1

Compactness and Clustering quality results for a data set with skewed distributions.

Diss. Separation Separation Separation
Avg. Std. Ratio Avg.

d 0.971795701 0.0185685451 1

d10 0.0029611253 0.0005897832 0.0030470656

d5 0.0932204575 0.0090867253 0.0959259826

d0.1 1.0416448857 0.001980664 1.0718764083

d0.01 1.0047158048 0.0001909503 1.0338755396

Separation results for a data set with skewed distributions.

Diss. Compactness Compactness Compactness
Avg. Std. Ratio Avg.

d 0.2564313287 0.0572997859 1

d10 4.495583902E-007 3.0731794825E-007 1.7531336456E-006

d5 0.0007628527 0.0004963497 0.0029748809

d0.1 0.8664974196 0.0223773478 3.379062238

d0.01 0.9630194558 0.0029079036 3.7554672456

Compactness and Clustering quality results for the Iris data set.

Diss. Separation Separation Separation
Avg. Std. Ratio Avg.

d 0.2841621289 0.3120959612 1

d10 1.1716078298E-005 2.0292841461E-005 4.1230259434E-005

d5 0.0045832156 0.0079357613 0.0161288754

d0.1 0.8715968561 0.0944160231 3.0672519923

d0.01 0.9858840558 0.0108572902 3.4694421086

Separation results for the Iris data set.

Table 4.1: Cluster compactness and separation using PAM on three synthetic data
sets and Iris. Both ratio averages are computed relative to the data set cluster
compactness and separation values given by the original dissimilarity d.
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(a) WellSeparated Data Set (b) DifferentDensity Data Set

(c) SkewDistr Data Set (d) Iris Data Set

Figure 4.2: Relation between Compactness and Separation Ratio for three synthetic
data set and for the Iris data set

We show a scenario where PAM, when applied to the original Euclidean space,

does not perform well. Nevertheless, we are able to improve the PAM’s results by

applying a transformation that decreases the ultrametricity of the original space and

running PAM on the transformed space.

Consider the data set presented in Figure 4.3a which was synthetically generated

in an Euclidean Space with pairwise metric d by three normal distributions with

similar standard deviation but different densities. It has 300 points in total, with the

densest group including 200 points and the other two containing 75 and 25 points.
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Note that the somewhat sparse groups are also located very close to each other.

Different symbols are used to identify the three distinct distributions. PAM’s objec-

tive function tries to minimize the sum of the dissimilarities of all objects to their

nearest medoid. However, it may fail to partition the data into the original distribu-

tions when dealing with different density data since the split of the densest cluster

may occur. In our example, PAM does exactly that and also combines the two sparse

clusters that are not well separated. Notice that unlike k-means (which also does not

perform well in these scenarios but eventually can find the right partition due to the

randomness on the selection of the centroids), PAM will most likely fails due to the

determinism of its BUILD and SWAP steps combined and the choice of the objective

function.

(a) Synthetic Data (b) d (c) d 0.01

(d) d 0.1 (e) d 5 (f) d 10

Figure 4.3: 4.3a shows the synthetic data generated from distributions with different
density. 4.3b to 4.3f show the results of PAM using Euclidean distance d and other
dissimilarities obtained by transformations on d.

To explore the positive effect of increased intra-cluster compactness generated by

new spaces with lower ultrametricity on data containing those characteristics, we
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applied the same transformations with positive integer exponents to the original Eu-

clidean distance matrix obtained from d. Results show significant improvement of the

clustering. Figure 4.3b shows the result of applying PAM to cluster the synthetic data

with dissimilarity d. Note that the clustering result does not correspond to a partition

resembling the distributions that were used to generate the data. Figures 4.3d and

4.3c show that PAM also fails to provide a good partition with dissimilarities d 0.1

and d 0.01 since the increase in ultrametricity promotes equalization of dissimilarities

which may degrade even more the results. Note however that the partitions obtained

by PAM using the dissimilarities d5 and d10 form similar clusters to the ones gener-

ated by the original distributions. Indeed, the increase in compactness helps PAM to

create boundaries that are compliant with the original normal distributions.

Table 4.2 shows the measures and ratios for this data set. Figure 4.4 shows the

relationship between compactness and separation ratio.

Diss. Compactness Compactness Compactness Normalized
Avg. Std. Ratio Avg. Mutual Info.

d 0.1386920089 0.0558906421 1 0.6690207374
d10 1.2953679952E-009 6.3343701540E-010 9.3398891934E-009 0.9365672372
d5 2.8689799313E-005 1.0529323158E-005 0.0002068598 0.9365672372
d0.1 0.8428018314 0.0308261682 6.0767872501 0.6702445506
d0.01 0.9745718848 0.0037669287 7.026878423 0.6702445506

Diss. Separation Separation Separation
Avg. Std. Ratio Avg.

d 0.4604866874 0.7771228672 1
d10 0.0114269071 0.0197919837 0.0248148479
d5 0.104837087 0.1815831588 0.2276658368
d0.1 0.8160827216 0.2379010818 1.7722178381
d0.01 0.978284428 0.0270049282 2.1244575681

Table 4.2: Data set comprising clusters with different density.
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Figure 4.4: Relation between Compactness and Separation Ratio for the test data set

4.2 Promoting Clustering results by increasing clusterabiliy

of the dataset

From definitions of clusterability and ultrametricity, we note that the higher the

ultrametricity of a data set, the easier it is to cluster. For data sets with very high

ultrametricity, it is easy to get clustering results consistent with the natural cluster

structure by applying arbitrary clustering algorithms.

This idea is most useful when we encounter a data set that is difficult to cluster

using typical clustering algorithms. We can modify the dissimilarity matrix to elevate

the clusterability (or ultrametricity) of the dataset, and then perform clustering on the

resulting higher ultrametricity data set. Distance represents the pairwise relationships

between data points in the dataset. One way to improve the clusterability of a dataset

is to raise the ultrametricity through the special matrix product which we proposed

in Section 3.4 of Chapter 3.

Suppose we have a distance matrix A of a dataset S. If we need m min-max

matrix multiplications to achieve stability, then we define the clusterability of S to

be |S|
m

. The corresponding ultrametricity of its distance matrix is also |S|
m

. If we view

A2 = A · A as the distance matrix of dataset S, then the ultrametricity of distance

matrix A2 is |S
m−1 . Thus when applying the same clustering algorithm on both distance
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matrices, we expect a better clustering performance on distance matrix A2 than on

A.

Along these lines, we can continue using higher powers of A as the distance matrix

of S to improve clusterability. Since Am = Am+1, Am is the optimal distance matrix

for S with highest ultrametricity. In this case, the ultrametricity of the distance

matrix of S becomes |S|, which means the distance matrix of S is pure ultrametric.

If we apply clustering algorithms on this distance matrix, we expect better clustering

performance than on any lower power of A.

We verified this theory on a difficult data set. During the experiment, we first

apply a particular clustering algorithm on the original distance matrix A, and we get

a clustering result π1. Then we use the same clustering algorithm on distance matrix

Am, and we get a new clustering result πm. We compare the two results to ground

truth partition π0 and graph them in Figure 4.5. Since we are dealing with distance

matrix only, we pick k-medoids or Partitioning Around Medoids (PAM) algorithm as

the testing tool. PAM is one of the most common clustering algorithms that can be

applied to distance matrices. However, similar to k-means, PAM will also fall into

the local optima and is not suitable for non-sphere shaped clusters.

(a) Clustering result on Spiral dataset
based on original dissimilarity matrix

(b) Clustering result on Spiral dataset
based on maximum ultrametricity matrix

Figure 4.5: Two entangled spirals with total of 200 data points and perform k-medoids
on it.
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To exploit the weaknesses of PAM, we select a data set with two entangled spirals.

Figure 4.5 shows the comparison of the clustering results of PAM on the original

distance matrix of the data set and on the maximum ultrametricity distance matrix.

From Figure 4.5a, we can see that the PAM could not clearly distinguish one spiral

from the other. This is the result of running the clustering algorithm on the original

distance matrix. The distance we use here is the Manhattan distance. Since PAM is

not friendly to non-sphere shaped clusters, it is unable to extract the real groups from

this data set correctly. Nevertheless, in Figure 4.5b, we promote the ultrametricity of

the distance matrix (the stabilization power is 123) of the spiral data set. When we

apply PAM on the new distance matrix, the clustering algorithm becomes powerful

enough to separate the data set according to its natural cluster shape.

Similar phenomenon can be seen in the distance matrix. We draw the heatmap

for the original distance matrix and the new ultrametric distance matrix (Figure 4.6).

In both figures, the darker the color is, the smaller the pairwise distance between two

points. The label of points ranges from 1 to 200. The first 100 points come from the

first spiral and the rests are from the second. In the heatmap, the smaller labels are

put at the lower-left corner of the graph. Therefore, the lower-left and upper- right

corners of the distance matrix represent the pairwise distances between the point

of the same spiral. The other regions of the distance matrix represent the distance

between the two spirals.

The left graph(Figure 4.6a) represents the original distance matrix. It is the

Manhattan distance between points. In Euclidean space, it is hard to distinguish

points from two spirals. Therefore, PAM will fail to partition the two spirals correctly.

However, after promoting the ultrametricity of the distance matrix, we get a new

ultrametric distance matrix. The heatmap for this matrix is shown in Figure 4.6b.

From it, we can see a clear separation in the distance matrix. The distances between

points from different spirals are all larger than the distances between points within

48



(a) Original distance matrix on Spiral
dataset

(b) Maximum ultrametricity distance
matrix on Spiral dataset

Figure 4.6: Distance matrix of two entangled spirals with total of 200 data points

one spiral. The differences between points in different spirals are enlarged after the

increment of ultrametricity of the distance matrix. Thus, PAM algorithm is more

effective on the new distance matrix than on the original one.

We perform a similar experiment on the data set depicted in Figure 1.1a of Chap-

ter 1. Obviously, there is no clustering structure inside this data set; it is generated

from one Gaussian distribution. If we apply PAM to the original data set, we will

still get some clustering results (Figure 4.7a). However, such results can not mean-

ingfully express the inherent data structure. Nevertheless, when we run PAM on the

ultrametric matrix generated by the special matrix product (the stabilization power

is 31) on the original distance matrix, we get a partition in which the vast majority

of points in one cluster and only a few points in the center are in the other cluster.

The comparison can be seen in Figure 4.7.

Although the clustering result on the ultrametric matrix is still not a perfect

representation of the lack of cluster structure in the data set, it still indicates to the

users that the majority of the data set is in one cluster. This is closer to the true
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(a) Clustering Result based on original
dissimilarity matrix of data set with no
clustering structure

(b) Clustering Result based on maximum
ultrametricity matrix of data set with no
clustering structure

Figure 4.7: Data set with no data structure and has total of 300 data points and
perform k-medoids on it.

structure than the previous result, which created equal sized clusters. The Heatmaps

of the two distance matrices behave similarly to those of the spiral data set. Since

there is no clustering structure inside the data set, the ultrametric distances between

points are expected to be identical. In the corresponding heatmap, there are many

regions of uniform color. This demonstrates the similarity of the distance values in

the ultrametric matrix. On the other hand, the original distance matrix has a large

variation in its values. Figure 4.8 represents the heatmap of these two matrices.
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(a) Original Distance matrix on the one
Gaussian cluster dataset

(b) Maximum Ultrametricity distance
matrix on the one Gaussian cluster
dataset

Figure 4.8: Distance matrix of data set with one Gaussian distributed cluster. It
contains total of 300 data points
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CHAPTER 5

ON FINDING NATURAL CLUSTERING STRUCTURES
IN DATA

In this chapter, we illustrate the dual-criteria method that assists in the unsuper-

vised model selection process. Experiments are performed on both real and synthetic

data sets. The results indicate our approach is effective at detecting the natural

number of clusters. An evaluation algorithm is also introduced to validate the re-

sults generated by the dual-criteria method. Multiple choices of the parameter β are

explored, and the significance of varying β on solving problems with the data set of

imbalance-distributed clusters is also discussed.

5.1 Introduction

A simple approach to the problem of determining the number of clusters is to

generate several partitions with different number of clusters and to choose the best

partition based on an internal evaluation index. By plotting the dependency of this

index on the number of clusters, it is possible to determine the number of clusters.

One of the best-known techniques for the determination of the number of clusters

is to check the elbow point on the resulting curve [69]. This elbow point is loosely

defined as the point of maximum curvature and the desired number of clusters is the

cluster coordinate of the elbow point.

An alternative method is the gap statistics which aims to formalize the intuitive

approach of the elbow method by comparing of the logarithm of the cohesion with

a reference distribution of the data [80]. However, this method only works on well-

separated datasets. An alternative approach proposed in [79] regards clustering as a
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supervised classification problem which requires the estimation of “true” class labels.

The prediction strength measure evaluates the number of groups that can be predicted

from data.

In [20] the largest ratio difference between two adjacent points is used to locally

find the elbow point along the curve. Other authors use more than one pairs of points.

The first data point with a second derivative above some threshold value is used to

specify the elbow point [29, 32], while in [71] the data point with the largest second

derivative is used. All these techniques are sensitive to outliers and local trends,

which may not be globally significant [69].

Yet another approach to the estimation of the number of clusters is applying con-

sensus clustering [59] and resampling [68]. This involves clustering many samples of

the data set, and determining the number of clusters where clusterings of the vari-

ous samples are the most stable [69]. Consensus clustering or clustering aggregation,

has been explored for decades. A formal definition is given in [35], where consensus

clustering is defined as a clustering that minimizes the total number of disagreements

with a set of clusterings. This technique can deal with a variety of problems such as

developing a natural clustering algorithm for categorical data, improve the clustering

robustness by combining the results of many clustering algorithms, as well as deter-

mine the appropriate number of clusters. In recent years, many approaches have been

developed to solve ensemble clustering problems [48, 49, 27, 11, 31, 52] and [84].

As a task of consensus clustering, determining the number of clusters has been

considered in several publications. In [88] a hierarchical clustering framework is pro-

posed that combines partitional clustering (k-means) and hierarchical clustering. A

random walk technique on the graph defined by a consensus matrix of clusterings is

used in [82] to determine the natural number of clusters.

Information-theoretical methods are also applicable for detecting the number of

clusters in a dataset by defining a “jump method” of the transformed distortion d
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on a partition πd. The highest increase of d indicates the number of clusters with

respect to πd [77]. However, this approach is based on a strong assumption that

the clusters are generated based on Gaussian distributions. By integrating Rényi

entropy and complement entropy together, Liang et al [50] propose a method which

can determine the number of clusters on a dataset that has mixed set of feature types.

Their approach proposes a clustering validation index which considers within-cluster

entropy and between-cluster entropy and the best number of clusters is chosen when

such index reaches the maximum. The relationship between the k-means and the

expectation maximization algorithm was studied within the framework of information

theory by Kearns, Mansour and Ng in [44].

There also several other methods on detecting the number of clusters in a dataset.

In [42] the Maximum Stable Set Problem (MSSP) combined by Continuous Hopfield

Network (CHN) is used to find the natural number of clusters of a data set. The

algorithm detects the number of stable sets and uses this to represent the number of

clusters.

Shaqsi and Wang [9, 72] work with a similarity parameter and observe that in

a certain range of this parameter, the number of clusters formed by their 3-staged

algorithm remains constant. The number of clusters that corresponds to the longest

interval is chosen as the most appropriate number.

Kolesnikov, Trichina, and Kauranne [45] create a parametric modeling of the

quantization error to determine the optimal number of clusters in a dataset. This

method treats the model parameter as the effective dimensionality of the dataset. By

extending the decision-theoretic rough set model an efficient method to detect the

number of clusters is presented in [86]. This model applies the Bayesian decision pro-

cedure for the construction of probabilistic approximations. Hamerly and Elkan [37]

propose an algorithm that based on a statistical test for the hypothesis that a subset
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of data follows a Gaussian distribution. It only requires one parameter and avoids

the calculation of the covariance matrix.

An incremental approach called ”dip-means”, is introduced in [41] with the un-

derlying assumption that each cluster admits a unimodal distribution. The statistic

hypothesis test for unimodality (dip-test) is applied on the distribution of distances

between one cluster member and others.

In [83] a new method for automatically detecting the number of clusters based on

image processing techniques is discussed. This method adopts the key part of Visual

Assessment of Cluster Tendency(VAT), and regards the dissimilarity matrix as an

image matrix. Image segmentation techniques are applied to an image generated by

this matrix, followed by filtering and smoothing to decide the number of clusters in

the original data.

Cheung [19] proposes a new novel algorithm that can automatically select the

number of clusters by presenting a mechanism to control the strength of rival penal-

ization dynamically.

We propose a new methods to evaluate the number of clusters. It seeks to minimize

both clustering partition entropy and the cohesion of clustering. Since partition

entropy is anti-monotonic and cluster cohesion is a monotonic function relative to the

partial order set of partitions, we can use the Pareto Front to identify the natural

number of clusters existent in a data set.

After that, we evaluate the results using an approach based on the metric space of

partitions of a dataset that makes use of β-entropy, a generalization of Shannon’s en-

tropy introduced in [24, 38], and axiomatized in [76]. Other significant generalizations

of entropy belong to C. Tsallis [81, 73].

The main idea is that if a natural clustering structure exists in data, two methods

(e.g. k-means and one of several variants of hierarchical clustering) produce similar

clustering results. The extent to which partitions are distinct is evaluated using a
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distance between partitions that generalizes the distance between partitions induced

by Shannon’s entropy studied by L. de Mántaras [25]. We extend his results to

distances produced by β-entropies and suggest that this generalization may be useful

for clustering imbalanced data.

This chapter is organized as follows. In Section 2.2 partition entropy is introduced.

Section 5.2 illustrates the compromise between cluster entropy and its corresponding

cohesion and how it is used on determining the number of clusters. The experimental

results are analyzed in Section 5.3. We further validate the previous approach using

contour maps in Section 5.4. Conclusions and future work are discussed in Section 5.6.

5.2 Dual Criteria Clustering using Entropy and Cohesion

Our approach in identifying the natural number of clusters is seeking a compromise

between the partition entropy and the cohesion of clustering.

Partition entropy evaluates the imbalance between the sizes of the clusters that

constitute a partition. For a fixed number of blocks, the entropy is maximal when

blocks have equal sizes. As we saw in Section 2.2, the smaller the partition in the

poset (PART(S),6) the larger the entropy. Thus, the largest value of the entropy of

a partition of S is achieved for ιS; the smallest value is obtained for the one-block

partition ωS.

Cohesion is a measure of the quality of a clustering, defined as the within-cluster

sum of squared errors and denoted by sse.

Let S be the set of objects to be clustered. We assume that S is a subset of Rn

equipped with the Euclidean metric. The center cC of a subset C of S is defined as

cC = 1
|C|
∑

o∈C o.

For a partition π = {C1, C2, . . . , Cm} of S the sum of square errors sse of π is

defined as

sse(π) =
m∑
i=1

∑
o∈Ci

d2(o, cCi). (5.1)
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It is possible to show (see [74]) that if κ, λ ∈ PART(S) and κ 6 λ, then sse(κ) 6

sse(λ). Thus, cohesion is an anti-monotonic function on the partially ordered set

(PART(S),6); we have sse(ιS) = 0 and sse(ωS) =
∑

o∈S ‖ o ‖2 −|S| ‖ cS ‖2. We may

conclude that the entropy varies inversely with the cohesion of partitions.

Entropy and cohesion describe the clustering results from two different perspec-

tives and this suggests that a bi-criterial optimization would be helpful for choosing

the best clusterings.

We aim to simultaneously minimize H(π) and sse(π) that have inverse types of

variations with clusterings considered as partitions. This will allow us to define a

natural number of clusters using the Pareto front of this bi-criterial problem. Let

F : PART(S) −→ R2, where

F(π) = (H(π), sse(π)), (5.2)

where π ∈ PART(S).

Definition 5.2.1. Let π, σ ∈ PART(S). The partition σ dominates π if H(σ) 6 H(π)

and sse(σ) 6 sse(π).

A partition τ ∈ PART(S) is Pareto optimal if there is no other partition that

dominates τ .

In principle, several optimal partitions may exist, each with a specific number

of clusters. The set of partitions that are not dominated by other partitions is the

Pareto front of this problem (see [57, 66]).

If a partition π is Pareto optimal, then it is no worse than another partitions from

the point of view of (H(π) and sse(π)) and is better in at least one of these criteria.

To speed up the search for the members of the Pareto front we scalarize the

problem by computing a single objective optimization function defined utilizing the

concept of hypervolume [89] on entropy and sse. The hypervolume measure is the size
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of the space covered or size of dominated space (see [89]), is the Lebesgue measure Λ

of the union of hypercubes ai defined by a non-dominated point mi and a reference

point xref [21].

In our case, we set the reference point at the position that both entropy and sse

reaches its maximum. The maximum of entropy will be reached on partition ιS, while

the maximum value of sse is obtained at partition ωS. Then, the hypervolume that

corresponds to a partition π is

HV(π) = (H(ιS)−H(π))(sse(ωS)− sse(π)) (5.3)

The optimal partition for a dataset is obtained as

πopt = argmax
π

HV(π) (5.4)

The optimal number of clusters is computed by Algorithm 1.

Algorithm 1: Computation of the optimal number of clusters

Input: Dataset S, maximum number of clusters kmax
Output: The optimal number of clusters k for the input dataset
Initialize a list HV with length kmax;
for i= 1 to kmax do

Compute clustering πi on S with i clusters;
Calculate sse(πi) for partition πi;
Calculate the entropy H(πi) for partition πi;
Calculate hypervolume HV(πi) using Equality (5.3);
Set HVi = HV(πi);

return k = argmax
i

HVi

5.3 Experimental Results

The previous approach was tested on different datasets to evaluate its perfor-

mance. We used 5 synthetic datasets and 7 real-world datasets described in Table 5.1.
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Table 5.1: Data Set Information

Data Set Cardinality Attributes Class Number

Well Sepr. I 900 2 5
Well Sepr. II 900 2 5
Diff. Density 900 2 5
Skewed Dist. 900 2 5
Overlapping 900 2 5

Iris 150 4 3
Wine 178 13 3
Libras 360 90 15
Ecoli 336 7 8
Vowel 990 12 11

PenDigits 10992 16 10
Poker(1-9) 511308 10 9

The 2-dimensional synthetic datasets contain 5 Gaussian distributed clusters; each

cluster contains 300 data points produced using the R function rmvnorm imple-

mented by Leisch, F. et al [34]. By varying the means and standard deviations, we

obtained five different types of clusterings shown in the first column of Figure 5.1.

having the following features:

• clusters that are well separated;

• clusters that are well separated but closer with each other;

• clusters that have different density;

• clusters that have different sizes and number of points;

• clusters that overlap.

Also, we used several real-world data sets which originate from UCI machine

learning repository [51]:

Iris Data: This dataset contains 150 cases and 4 variables named Sepal.Length,

Sepal.Width, Petal.Length and Petal.Width corresponding to 3 species of iris (setosa,

versicolor, and virginica) [13].
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(a) Data Structure (b) Contour Map (c) HV-index

Figure 5.1: The Contour Map of the overlapping datasets and its corresponding
clustering structure; the x-axis of the contour graph represents the number of cluster
of k-means clustering while the y-axis represents those of hierarchical clustering.
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Wine Recognition Data: These data are the results of a chemical analysis of wines.

The analysis determined the quantities of 13 constituents found in each of the three

types of wines [6], which contain 59, 71, and 48 records, respectively.

LIBRAS Movement Database: LIBRAS, acronym of the Portuguese name “LÍngua

BRAsileira de Sinais”, is the official Brazilian sign language. The dataset contains

15 classes of 24 instances each, where each class refers to a hand movement type in

LIBRAS. Each instance represents 45 points on a 2-dimensional space, which can be

plotted in an ordered way (from 1 through 45 as the x-coordinate) in order to draw

the path of the movement.

Pen-Based Recognition of Handwritten Digits: The digit database was created

by collecting 250 samples from 44 writers. Digits are represented as feature vectors

by using linear interpolation between pairs of (xt, yt) points. Here xt and yt is the

coordinate information for the digits at when the writer is written. There are 10

different digits in the data set and the numbers of instance for each digits are roughly

the same.

Ecoli Dataset This dataset contains 360 instances and 7 features and is used to

predict the protein localization site. 8 classes are embedded into the dataset with the

largest class of 143 data points and the smallest one of only 2.

Vowel Recognition The dataset is generated from speakers’ independent recogni-

tion of the eleven steady state vowels of British English using a specified training set

of LPC derived log area ratios. It consists of a three-dimensional array: voweldata

[speaker, vowel, input]. The speakers are indexed by integers 0-89. (Actually, there

are fifteen individual speakers, each saying each vowel six times.) The vowels are in-

dexed by integers 0-10. For each utterance, there are ten floating-point input values,

with array indices 0-9. It has 990 instances.

Poker Dataset This dataset records a set of card types people hold in their hands.

Each record is an example of a hand consisting of five playing cards drawn from a
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standard deck of 52. Each card is described using two attributes (suit and rank), for

a total of 10 predictive attributes. There is one Class attribute that describes the

”Poker Hand”. We omit the Class 0 (Nothing in hand; not a recognized poker hand).

(a) Pareto Front for Iris Dataset (b) Pareto Front for Libras Dataset

Figure 5.2: The Pareto Front of solutions of Equation (5.2) for Iris and Libras dataset
using k-means clustering algorithm. The labelled points represent Pareto optimal
partitions and the labels show the corresponding number of clusters. x-axis represents
the cohesion while y-axis is the entropy. Both are normalized into [0, 1].

The algorithms described in Section 5.2 are applied on the datasets previously

mentioned. To verify the stability of our method, several popular methods on deter-

mining number of clusters are used for comparison.

Gap Statistics: This method proposed in [80] gives the natural number of clusters

by defining a gap function as follows:

Gapn(k) = E∗nlog(Wk)− log(Wk),

where Wn is the pooled within-cluster sum of squares around the cluster means for

k clusters, E∗n denotes the expectation under a sample of size n from the reference

distribution. The estimated k̂ will be the value maximizing Gapn(k) after taking the

sampling distribution into account.

The idea of this criterion is to standardize the graph of log(Wk) by comparing it

with its expectation under an appropriate full reference distribution of the data. The
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estimate of the optimal number of clusters is then the value of k for which log(Wk) falls

the farthest below this reference curve. We use the function clusGap in R package

“cluster” for simulation [54].

Jump method: It uses the concept of distortion to describe the within-cluster

dispersion for a particular partition [77]. The definition of the minimum achievable

distortion associated with fitting k centers to the data is

dk =
1

p
min

c1,...,ck
E[(X− cx)TΓ−1(X− cx)], (5.5)

where X is a p-dimensional random variable having a mixture distribution of k com-

ponents, each with covariance Γ. The c1, . . . , ck are a set of candidate cluster centers

and cx is the one closest to X.

Equality (5.5) gives the average Mahalanobis distance, per dimension, between X

and cx . If Γ is the identity matrix, distortion will be the mean squared error. The

number of clusters k is determined as

k = argmin
k

d−Yk − d−Yk−1,

where Y is an arbitrary value called transformation power and it usually equals to p
2
.

Prediction Strength: For a particular dataset S, let Xtr and Xte be the training

and testing subset of the data, where Xtr ∪Xte = S. Then we partition both Xtr and

Xte into k clusters. Let πte = {A1, . . . , Ak} and πtr = {B1, . . . , Bk} be the partitions

for Xte and Xtr, respectively. The prediction strength of S given k is defined in [79]

as

PS(k) = min
16l6k

∑
i 6=j{δ((xi, xj),Xtr) | xi, xj ∈ Al}

|Al|(|Al| − 1)
,

where δ((xi, xj),Xtr) is defined for pairs (xi, xj) that belong to the same cluster in

the testing sets as δ((xi, xj),Xtr) = 1 if xi and xj are assigned to the same closest
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centroid in Xtr and is 0 otherwise. This method is mainly implemented with the help

of function prediction.strength in R package “fpc” [39].

Regularized Information Maximization (RIM): This technique was introduced in [36].

It seeks to optimize a criterion that captures class separation, class balance and classi-

fier complexity and may be interpreted as maximizing the mutual information between

the empirical input and implied label distributions.

The Akaike Information and the Bayesian Information Criteria: An alternative

approach for determining the number of clusters for the k-means algorithm is using

the Akaike Information Criterion [7, 8] (AIC), or the Bayesian Information Crite-

rion (BIC) [70] for model selection. When these criteria are applied to the k-means

clustering they can be written as

AIC = argmin
k

[−2L(k) + 2kd] and, (5.6)

BIC = argmin
k

[−2L(k) + ln(n)kd], (5.7)

where k is the number of clusters, −L(k) is the negative maximum log-likelihood, d is

the number of features, and n is the number of points in the dataset. For clustering

the first term −2L(k) in these definition is the minimum of the sum of squared errors

for k clusters, min{sse(π) | |π| = k} and both models aim to balance the model

distortion (a measure of the extent data points differ from the prototype of the their

clusters) and model complexity, where a penalty is incurred for each newly created

cluster [55]. Therefore, the previous expressions become:

AIC = argmin
k
{sse(π) + 2kd | π ∈ PARTk(S)}, (5.8)

and

BIC = argmin
k
{sse(π) + ln(n)kd | π ∈ PARTk(S)}. (5.9)
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Note that BIC has a larger penalty term and the model selected by BIC tends to be

simpler.

The minimization of both model distortions (sums of squared errors) and the

model complexity (number of clusters) can be regarded as a bi-criteria optimization

problem and thus, it is similar to our approach. However, both the penalty terms of

both AIC and BIC depend on the values of k not on the actual clusterings.

From the point of view of multi-objective optimization the two methods are just

the traditional weighted sum method of optimizing sse(π) and kd with weights 2d

and ln(n)d, respectively. Nevertheless, the lack of consistency of the scale of two

terms (distortion and complexity) may lead to a significant problem. For datasets

with high dimensionality, the penalty term dominates the smaller sse(π) term and

the minimum of the expression is be reached for k = 1. Such cases occur in text

clustering [55]. If the dataset is pretty sparse (which results in a large value of sse(π))

and the the number of dimension is relatively small, the whole expression will be

dominated by the sse(π) term. Examples can be seen from large datasets PenDigits

and Poker. Figure 5.3 and 5.4 demonstrates the phenomenon on PenDigits dataset.

In both cases, the value of the criterion does not show any minimum for the values

of the AIC or BIC criteria.

Our proposed hypervolume does not require weighting the contributions of the

balancing and cohesion term, unlike the variational approaches that seek to integrate

these contravariant factors [36, 65, 10] and require hyper-parameters that affect the

resulting number of clusters. In most cases, we use the Shannon entropy (for β = 1)

avoiding the use of hyper-parameters. Note that the parameter β is used for β 6= 1

only when we apply our approach to imbalanced data sets.

We used the functions Optimal Clusters GMM and Optimal Clusters KMeans of

the R package ClusterR [60] to seek the number of clusters in several data sets

using both AIC and BICṪhe first function seeks the optimal number of clusters for
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(a) AIC for PenDigit using the Gaussian
Mixture Model

(b) AIC for PenDigit by k-means clus-
tering

Figure 5.3: AIC behavior on PenDigit dataset.

(a) BIC for PenDigit using the Gaussian
Mixture Model

(b) BIC for PenDigit by k-means clus-
tering

Figure 5.4: BIC behavior on PenDigit dataset.

a Gaussian mixture model using the EM algorithm, while the second computes the

number of clusters for k-means. To avoid of losing generality, we apply both AIC and

BIC methods.

Our method performs well on several synthetic datasets with the ambiguity of the

dataset with overlapping clusters, as shown in Figure 5.1.

Nevertheless, this dataset can also be viewed as a 3 cluster dataset in which 2

clusters have 2 overlapping subclusters as shown in the last row of Figure 5.1. From
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Table 5.2: Comparison between the number of clusters for datasets; g represents the
number of clusters obtained by using the log-likelihood function of Gaussian Mixture
Model while k represents those numbers when using the sum of squared errors.

Data Sets β
natural number of clusters(CPU Times[seconds])

Gap Stat. Jump Mthd. Pred. Strgth. AIC(g/k) BIC(g/k) RIM HV Index Cntr. Mthd.

Well Sepr. I 1.00 5(3.92) 5(0.87) 3(2.90) 8(1.23)/30(0.29) 8(1.14)/30(0.34) 12(976) 5(0.92) 5
Well Sepr. II 1.00 5(4.04) 5(0.92) 5(2.82) 13(1.19)/30(1.11) 5(1.23)/30(1.12) 6(977) 5(0.90) 5
Diff. Density 1.00 5(4.13) 5(0.97) 5(2.96) 5(1.30)/30(0.31) 5(1.11)/30(0.37) 4(968) 5(0.95) 5
Skewed Dist. 1.00 5(4.17) 30(1.06) 5(3.05) 6(1.49)/30(0.32) 5(1.13)/30(0.33) 3(968) 5(0.99) 5
Overlapping 0.95 3(4.26) 3(1.09) 5(2.87) 6(1.34)/30(0.41) 5(1.19)/30(0.41) 1(960) 5(0.97) 3/6

Iris 1.00 4(0.65) 24(0.33) 3(1.60) 30(0.11)/5(0.48) 30(0.13)/4(0.53) 25(962) 3(0.55) 3
Wine 1.0 1(1.22) 28 (0.93) 3 (2.01) 30(0.59)/30(0.26) 7(0.50)/30(0.50) 19(964) 4 (0.65) 8
Libras 1.00 6(9.65) 30(1.96) 2(5.52) 30(1.66)/2(1.27) 30(1.42)/1(1.09) 13(964) 13(1.95) 15/16
Ecoli 0.9 6 (1.90) 25 (1.32) 3 (1.96) 30(0.51)/2(0.12) 11(0.38)/1(0.41) 9(967) 7(0.65) 7
Vowel 0.8 4 (5.67) 29 (1.53) 4 (2.9) 30(1.21)/27(0.32) 30(1.07)/19(0.33) 5(983) 9(1.35) 13

PenDigits 1.20 22(206.2) 29(19.41) 6(25.10) 30(7.52)/30(5.53) 30(7.16)/30(5.38) - 9(9.27) 15
Poker(1-9) 1.4 4 (1889) 29 (1574) 2 (2080) 30(256)/30(926) 30(240)/30(915) - 10(477) -

the HV-index curve, we can still see that the index also achieved relatively high value

at 3 number of clusters.

The HV-index is designed to optimize simultaneously the criteria of Equality (5.2).

Since we are seeking to minimize both the entropy and the cohesion, the region of

feasible solution has to be convex in the left-lower bound. If the algorithm can cluster

the dataset well, the partition generated from it will be close to the bound of the region

of feasible solution. Thus, the set of pairs (H(π), sse(π)) for different partitions will

form a convex curve. Figure 5.2 shows pairs of entropy and sse of k-means clustering

results with different number of clusters on Iris and Libras dataset.

HV index scalarizes the Equation (5.2) using the hypervolume indicator. Both

entropy and cohesion are normalized to values in [0, 1]. The entropy on partition is

defined as the generalized entropy in Equation (2.1) with parameter β. As we will

show in Section 5.4, different values of β will affects detection of the natural number

of clusters. The β value we pick is given in Tables 5.2 for each dataset.

The natural number of clusters is successfully determined for all synthetic data

sets. Especially, the HV index did not fail on the dataset with overlapping clusters

for β = 0.95 even if the value on 3 is also relatively high (Figure 5.1c).
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The variation of the HV index on other four synthetic and four real-world datasets,

respectively are shown in Figure 5.1.

Table 5.2 gives the results of the application of the algorithm on total of 12 different

datasets (5 synthetic and 7 real datasets). The HV index works well on all of those

5 synthetic datasets. Although HV failed to be the best for dataset Wine, it still

achieves the second closest value on the optimal number of clusters.

In Table 5.2, we also show that our method outperforms some existing algorithms.

Despite the large size of Poker dataset, HV-index proved to be strongly scalable. All

experiments were performed on a 64-bit, Lenovo X1-Carbon laptop with Core i7 and

8GiB memory.

5.4 k-means, Hierarchical Clustering and Contour Curves

The natural number of clusters existing in a data set is evaluated by a repeated

application of the k-means clustering algorithm in conjunction with a hierarchical

clustering technique.

Hierarchical clustering is an agglomerative clustering technique that does not re-

quire the number of clusters in advance. Hierarchical algorithms cluster data by

generating a tree structure or dendrogram. At each level of the tree the closest clus-

ters (in the sense of a specific dissimilarity measure between clusters referred to as a

merging scheme M) are fused into a cluster located on an upper level in the tree.

A particular partition of the dataset is obtained by cutting the cluster tree at

a certain level. The successive cuts yield a chain of clusterings (π1, . . . , πq). These

partitions are compared with the partitions σ1, . . . , σp produced by the k-means al-

gorithm for 1 6 k 6 p. Distances between k-means partitions πi and hierarchical

partitions σj are evaluated using the marching square representation [56].
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A two-dimensional plot has the number of k-means clusters on the x-axis and the

number of hierarchical clusters on the y-axis (as produced by the Ward hierarchical

algorithm [61]).

We used the hclust and the kmeans functions of the R package [67] to compute

the Ward-link hierarchical clustering and k-means clustering, respectively.

Using an interpolation process the marching square representation produces a

contour curve defined, in our case, as curves that correspond to values of entropic

distances between partition pairs of the form (πi, σj).

Algorithm 2: Evaluation of the choice of number of clusters

Input: Dataset S, the range of the number of clusters [kml , kmu ] for the
k-means clustering, the range of number of clusters [khl , khu ] obtained
by cutting the dendrogram of a hierarchical clustering, the merging
scheme M of a hierarchical clustering

Output: the contour C of the distance between πi,∀i ∈ [kml , kmu ] and
πj,∀j ∈ [khl , khu ]

initialize the distance matrix D with size = (kmu − kml)× (khu − khl)
apply hierarchical clustering on S with merging scheme M and generate a den-
drogram H

for i=kml to kmu do
k-means clustering on S with i clusters and generate partition πi
for j=khl to khu do

cut dendrogram H and get the partition πj with j clusters
Calculate distance d between πi and πj;

Set Di,j = d(πi, πj);

plot the contour C from the distance matrix D by applying Marching Square
Algorithm [56]
return C

Note that Algorithm 2 needs no input parameters. The natural number of clusters

can be determined using the contour curve that corresponds to a minimum distance.

Figure 5.5a gives the output for an artificially produced 10-cluster dataset of

Algorithm 2. The contour curve that corresponds to the smallest distance (0.012)

suggests that the natural number of clusters is indeed 10.
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(a) 10-cluster Artificial Dataset (b) Iris Dataset

Figure 5.5: The left figure is the contours of an artificial dataset with 10 Gaussian
Distributed clusters. The right figure is the contours of Iris dataset. The y-axis
represents the number of clusters with respect to Ward.D link hierarchical clustering,
while the x-axis gives the parameter k for the k-means clustering.

The choice of clustering methods in Algorithm 2 must be done judiciously; indeed,

if these clustering algorithms are very different, we could encounter datasets for which

it is impossible to achieve a consensus on the number of clusters produced by these

algorithms. On the other hand, if two algorithms are too similar to each other, then

many clustering results will be similar to each other. The result will also not be

plausible.

In our experiments, we use Ward-link hierarchical clustering and k-means clus-

tering algorithm. Although these two algorithms share the same cost functions on

clustering data, their procedures of clustering are quite different. When the number

of clusters is equal to the number of data points in the dataset, the clustering re-

sults will always be the same no matter what clustering algorithms are applied on

it. However, this is not the case in practice. Therefore, we only consider the number

of clusters for a particular dataset within a particular range. In our experiments, we

selected the range between 2 to
√
|S|+ 10, |S| is the number of points in set S.
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5.5 Experiments with Unbalance Data

The flexibility afforded by generalized entropies allows choosing β to improve

results in the case of imbalanced data sets.

Experiments suggest that small values of β may compensate for the sizes of small

clusters and thus provide a more accurate estimation of the natural number of clusters.

We verified this assumption on both synthetic and real data. A random portion of one

of the clusters of the fourth synthetic data set shown in the fourth row of Figure 5.1

was removed and we sought to determine the number of clusters in the resulting

imbalanced data using the dual criteria algorithm.

The same cluster modification was performed on the Iris data set by eliminating

a portion of the versicolor cluster. As shown in Figure 5.6a, 5.6b, to retrieve the

correct number (in our case, it is 5 and 3) better results are obtained with values of

β that are less than 1.

For the data set Wine, there are three unbalanced clusters: the size of the largest

one is almost twice as the size of the smallest one. To maintain consistency, we

randomly removed 50% to 90% of the largest cluster, so that we can have roughly

the same situation as in previous two examples. Figure 5.6c still shows a similar

dependency of the quality of the clustering for smaller values of β.

For all three data sets, we record the average point of the range for each portion

of the reduced cluster and apply linear regression. The regression results presented

in Figure 5.6 show that all regression lines have positive slopes, which indicate that

smaller values of β yield better results for large imbalances created by reduction in

size of one of the clusters.

5.6 Conclusions

Our approach seeks to minimize both clustering partition entropy and the cohesion

of clustering. The concept of Pareto Front is utilized to illustrate how to identify
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(a) k = 5, Synthetic Data (b) k = 3, Iris Data

(c) k = 3, Wine Data

Figure 5.6: Range of β that yields correct k clusters for the modified dataset.

the natural number of clusters existent in a data set. Experiments performed on

both synthetic and real datasets confirm that this technique gives a relatively better

indication on the natural number of clusters, comparing with existing methods.

Contour maps of the comparative results of two quite distinct cluster algorithms

are used as a supplementary validation technique. If a natural clustering exists in

the dataset, these distinct clustering algorithms will produce similar results with

approximately the same number of clusters.

We intend to focus our attention on clustering imbalanced data, where the gener-

alized entropy and a metric generated by this entropy seem promising. Qualitatively,

we discover that if the majority of clusters are smaller in size, compared to the group

with the largest size, we could choose a smaller β above 1 to achieve the optimal

number of clusters, while if only few clusters are smaller in size, β should be chosen
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to be small as well and likely less than 1. This phenomenon can be seen in the results

from previous experiments.
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CHAPTER 6

CONCLUSIONS AND FURTHER STUDYING

In this thesis, we take efforts to solve the problems of cluster tendency and cluster

validity. For dealing with cluster tendency, we applied the concept of ultrametric and

designed a new definition of ultrametricity on a data set. To achieve this, we created

a novel operation for matrix multiplication. If we apply this special matrix operation

to the dissimilarity matrix of a data set, we can obtain a tool for computing the sub-

dominant ultrametric of a dissimilarity and assessing the existence of an underlying

clustering structure in a dissimilarity space.

The “power” operation successfully eliminates the redundant information in the

dissimilarity matrix of the dataset but maintains the useful information that can

discriminate the cluster structures of the dataset.

In a series of seminal papers[62, 63, 64], F. Murtagh argued that as the dimension-

ality of a linear metric space increases, an equalization process of distances takes place

and the metric of the space gets increasingly closer to an ultrametric. This raises the

issues related to the comparative evaluation (statistical and algebraic) of the ultra-

metricity of such spaces and of their clusterability, which we intend to examine in the

future.

Based on the determination of clusterability of a data set, we can take advantage of

the information of the clusterability to help us improve the quality of clustering tasks.

Moreover, the intrinsic matrix multiplication process naturally has the ability of being

parallelized. A GPU based parallel algorithm for calculating the clusterability can be

easily executed. Since the ultrametric we finally get is the maximum sub-dominate
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Algorithm 3: Get partition from ultrametric distance matrix (getPrtUlt)

Data: ultrametric distance value u, ultrametric distance matrix U and
dataset D

Result: partition σ on distance matrix U
Ut← U ;
σ ← ∅;
dLst← {i}|D|i=1; // create an index list to represent each data

point

while Ut 6= ∅ do
Let Ut1 be the first row of Ut;
cid← {i | u ≥ ri, ri ∈ Ut1}; // all data points that close to

point 1(≤ u) should be in the same sphere. The sphere is a

cluster C
C = {aj | j ∈ dLst[cid], aj ∈ D};
σ ← σ ∪ {C};
idx← {i | u < ri, ri ∈ Ut1};
Ut← Ut[idx, idx]; // update distance matrix with points outside

sphere

dLst← dLst[idx]; // update data index list with points outside

sphere

end
return σ

ultrametric, it will have a strong potential in resolving several current challenges in

data clustering, such as outlier detection and determination of the number of clusters.

Retrieving the knowledge from Chapter 2 and Section 3.5 of Chapter 3, ultrametric

space is a so-called partitional metric space. If we pick a distance value of r, we can

separate the whole data space into several disjoint balls with radius r. If r is larger,

we expect to have a smaller number of balls, and if r is smaller, we expect to have

more balls after separation. Algorithm 3 gives a simple way to partition the dataset

with a given distance value.

When we create an r-spherical clustering of the dataset for a particular r, we

seek to determine whether each ball of the partition contains points from only one of

the natural clusters of the dataset.Since an r-spherical clustering is generated from
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(a) Partition by 3
spheres

(b) Partition by 4
spheres

(c) Partition by 5
spheres

(d) Partition by 6
spheres

(e) Partition by 7
spheres

(f) Partition by 8
spheres

Figure 6.1: Experiment on a dataset with five Gaussian distributed clusters.

an ultrametric distance matrix, we want to make sure it also reflects the clustering

structure of the original metric space.

If we choose a sufficiently large value of r, namely the largest value from the

ultrametric distance matrix, we get one ball which contains the whole dataset. Here,

the ball will surely contain more than one natural cluster of the data set. Conversely,

by choosing r to be 0, we get a partition where every point forms a cluster itself.

In this minimal case, every cluster must contain points from only one of the natural

clusters. Thus, Between the minimum and maximum of r values, there exists a

maximum value u, such that if we use u to partition the dataset, each ball with

radius u only contains one natural cluster of the dataset. We consider this u to be

the ideal radius of partition of the data set. Algorithm 4 explicates the procedure
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Algorithm 4: Get maximum value of radius

Data: Dataset D with natural cluster structures, groudtruth partition π on
D

Result: uk, it is the value that we need ultrametric sphere with radius at
most uk to cover original dataset such that each sphere only
contains data points from one original cluster of the dataset

U ← CalcUltraMtx(D) ; // calculate ultrametric distance matrix

of D

{ui}|D|i=1 ← sortUnique(U); // sort distinct distance values in

decreasing order

k = 1;
repeat

σ ← getPrtUlt(uk, U,D);
check ← True;
foreach cluster C ∈ σ do ; // The shape of C is a sphere in

ultrametric space with radius uk

Let πC ← the trace of π on C;
if |πC | > 1 then

check ← Flase;
break the inner loop;

end

end
k ← k + 1;

until check ← True or k = |D|;; // no sphere contain data points

from more than one cluster

return uk

of finding u. CalcUltraMtx is the function of using min-max matrix multiplication

to calculate the ultrametric distance matrix from dataset D. sortUnique sorts the

distinct distance values of ultrametric distance matrix in decreasing order.

We perform the algorithm on a well-separated dataset with five Gaussian dis-

tributed clusters. Figure 6.1 shows the distribution of natural clusters on different

clustering results. As we can see, when we partition the dataset with 7th largest

value of the ultrametric distance matrix, each ball contains only one natural cluster.

Among these seven balls, two of them have 0 radii, because they only include one

element respectively. If we regard these two elements as the outliers, the remaining
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five balls each correspond to a natural cluster. This phenomenon suggests we can use

the size of spheres generated by the r-spherical clustering to detect the number of

clusters and outliers.

In checking cluster validity, we mainly focus on the determination of the number

of clusters. Besides the method we proposed in Chapter 5, another direction of inves-

tigation is seeking to integrate mean-shift techniques with other evaluation criteria

for clustering such as cohesion or size balancing. Mean-shift was introduced by Fuku-

naga and Hostetler [33] for seeking the mode of a density function represented by a

set S of samples. This procedure uses kernels (defined as decreasing functions of the

distance from a given point t to a point s in S). For every point t in a given set T ,

the sample means of all points in S weighted by a kernel at t are computed to form

a new version of T . This computation is repeated until convergence. The resulting

set T contains estimates of the modes of the density underlying set S. Cheng [18]

developing a more general formulation and demonstrated its uses in clustering and

global optimization. He showed that mean shift is an instance of gradient ascent and

that mean shift has an adaptive step size.

More recently, M. Fashing and C. Tomasi [30] proved that for of piecewise constant

kernels, the step is exactly the Newton step and, in all cases, it is a step to the

maximum of a quadratic bound. They proved that mean-shift is an optimization

procedure.

The work of Comaniciu and Meer [22] refocused the attention on the mean-shift

procedure due to its applications in image segmentation and discontinuity-preserving

smoothing. They proved that for discrete data the convergence of a recursive mean-

shift to the nearest stationary point of the underlying density function and, therefore,

its utility in detecting the the modes of the density, and, therefore, the “natural”

number of clusters existent in data.
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