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Introduction

Clustering is the prototypical unsupervised learning activity which consists
in identifying cohesive and well-differentiated groups of records in data.

I increasing needs of clustering massive datasets;
running clustering algorithms is expensive (especially for hierarchical
and spectral clustering);

I data exist without any obvious clustering structure;
however, if a clustering algorithm is applied, an irrelevant clustering
structure may be returned;

I no ground truth in many practical clustering tasks (data is not
labeled);
different clustering algorithms give different (often implicit) measures
of clustering quality;

I ambiguity exists for picking correct number of clusters;
in practical, it is even harder for datasets with heavily imbalanced
cluster structures.
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Introduction

Our works tend to accomplish the following tasks:

I Deciding whether it is worth to do clustering on a dataset

I Improving the clustering result by twisting the distance space of
dataset

I Determining the number of clusters in a dataset

I Unsupervised evaluation of clustering result
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Clusterability Concept

A data set is clusterable if such groups exist; however, due to the variety in
data distributions and the inadequate formalization of certain basic notions
of clustering, determining data clusterability before applying specific
clustering algorithms is a difficult task.

I Data clusterability is the existence of clustering (grouping) structure
in data. This means that data can be partitioned in groups containing
similar objects such that the groups are well-differentiated.

I We seek a measure of clusterability that quantifies the degree of how
much inherent cluster structure the data possess.

I If a dissimilarity defined on a data set is close to an ultrametric it is
natural to assume that the data set is clusterable.
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Ultrametrics

Let S ⊆ Rk be a finite k-dimensional data set. An ultrametric is a
mapping d : S × S → R≥0, which satisfies the following properties:

I Identity: d(x , x) = 0;

I Symmetry: d(x , y) = d(y , x)

I Triangle Inequality:

d(x , y) ≤ max{d(y , z), d(x , z)},∀x , y , z ∈ S , (1)
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r -spheric clustering

Definition

A closed sphere in (S , d) is a set B[x , r ] defined by

B[x , r ] = {y ∈ S | d(x , y) 6 r}.

When (S , d) is an ultrametric space two spheres having the same radius r
in (S , d) are either disjoint or coincide.

Definition

The collection of closed spheres of radius r in S , Cr = {B[x , r ] | r ∈ S} is
a partition of S ; we refer to this partition as an r -spheric clustering of
(S , d).

Every r -spheric clustering in an ultrametric space is a perfect clustering
(all of its in-cluster distances are smaller than all of its between-cluster
distances).

Kaixun Hua – Data Mining Research Lab (UMass Boston) Clusterability, Model Selection and Evaluation 7 / 45



A Special Matrix Product

Let P∞ = {x ∈ R | x > 0} ∪ {∞}, we define “∨” and “∧” be the binary
operation on P∞ as follows:

Definition

x ∨ y = min{x , y} and x ∧ y = max{x , y}

Suppose A ∈ Pm×n∞ and B ∈ Pn×p∞ ,
We define a new product of two matrices as follows:

Definition

C = A⊗ B ∈ Pm×p∞ such that,

cij =
n∨

k=1

(aik ∧ bkj) = min{max{aik , bkj} | 1 6 k 6 n} (2)
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Ultrametricity and Matrix Product

Definition

A is an ultrametric matrix if A is symmetric, aii = 0 and
aij 6 max{aik , akj} for 1 6 i , j , k 6 n.

If we define A 4 B if aij > bij , we have the following consequence:

Theorem

If A ∈ Pn×n is a dissimilarity matrix there exists m ∈ N such that

A 4 A2 4 · · · 4 Am = Am+1 = · · · = Am+d ,∀d > 0

and Am is an ultrametric matrix.
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Ultrametricity

The ultrametricity of a matrix A ∈ Pn×n is defined as follows:

Definition

Let A ∈ Pn×n be the dissimilarity matrix of S , and m(A) is the least integer
that Am is the ultrametric matrix, then the ultrametricity u(A) = n

m

We refer to m(A) as the stabilization power of the matrix A.
If m(A) = 1, A is ultrametric itself and u(A) = n.
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The Definition of Clusterability [SH19]

Conjecture: a dissimilarity space (D, d) is more clusterable if the
dissimilarity is closer to an ultrametric, hence if m(AD) is small.

Definition

The clusterability of a data set D is the number

clust(D) =
n

m(AD)
,

where n = |D|, AD is the dissimilarity matrix of D and m(AD) is the
stabilization power of AD .

The lower the stabilization power, the closer A is to an ultrametric matrix,
and thus, the higher the clusterability of the data set.
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Empirical Study

Lattice-like Toy Data Generation:

I Generate series of datasets by assigning data points on the positions
with integer pairs.

I Create dissimilarity matrix by Manhattan distance

I Move data points to different locations to generate distinct structured
clusterings.

Real Data Set:

I Iris, Swiss, Faithful, Rivers, Trees

I USAJudgeRatings, USArrests, Attitude, Cars

Kaixun Hua – Data Mining Research Lab (UMass Boston) Clusterability, Model Selection and Evaluation 12 / 45



Experiments - Lattice Toy Data

Figure 1: k = 9 Figure 2: k = 6 Figure 3: k = 3

Figure 4: k = 4 Figure 5: k = 2 Figure 6: k = 1
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Histogram of Original Distance

Figure 7: k = 9 Figure 8: k = 6 Figure 9: k = 3

Figure 10: k = 4 Figure 11: k = 2 Figure 12: k = 1
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Histogram of Distance after Power Operation

Figure 13: m = 6 Figure 14: m = 4 Figure 15: m = 5

Figure 16: m = 5 Figure 17: m = 7 Figure 18: m = 9
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Distance Collapse

Given dataset with 4 perfect-uniform cluster and generated with the same
scheme above:

Figure 19:
Original dataset
with four
clusters

Figure 20:
Histogram of
distinct value
in the original
matrix

Figure 21:
Histogram of
distinct value
in the matrix
after one
multiplication

Figure 22:
Histogram of
distinct value
in the matrix
after two
multiplication

Figure 23:
Histogram of
distinct value
in the matrix
after three
multiplication
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Validation on Real Data Sets

Table 1: All clusterable datasets have values greater than 5 for their clusterability;
all non-clusterable datasets have values no larger than 5.

Dataset n Dip Silv. m(AD) clust(D)

iris 150 0.0000 0.0000 14 10.7
swiss 47 0.0000 0.0000 6 7.8
faithful 272 0.0000 0.0000 31 8.7
rivers 141 0.2772 0.0000 22 6.4
attitude 30 0.9040 0.9449 6 5
trees 31 0.3460 0.3235 7 4.4
USAJudgeRatings 43 0.9938 0.7451 10 4.3
USArrests 50 0.9394 0.1897 15 3.3
cars 50 0.6604 0.9931 15 3.3
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Clustering by Elevating Clusterability

I We can improve the quality of clustering result by increasing the
ultrametricity of its dissimilarity matrix.

I By definition, the new dissimilarity matrix will be more clusterable.

I Better performance can be achieved on the powered dissimilarity
matrix(ultrametric distance matrix)
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Entangled spirals dataset

Clustering by promoting ultrametricity (clusterability)
k-medoids clustering algorithm are performed on two dissimilarity matrices:

Figure 24: Clustering Result on
Spiral dataset based on original
dissimilarity matrix

Figure 25: Clustering Result on
Spiral dataset based on the
maximum ultrametricity matrix
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Entangled spiral dataset

Distance matrix of dataset with two entangled spirals with total of 200
data points

Figure 26: Original Distance
matrix on Spiral dataset

Figure 27: Maximum
ultrametricity Distance matrix
on Spiral dataset
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Model Selection

Difficulties in model selection in clustering:

I most clustering algorithms need a parameter k that specifies the
number of clusters to detect;

I the definition of an optimal model is ambiguous;

I clustering is even more difficult if the clusters are heavily imbalanced.
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Generalized Partitional Entropy

Definition

A partition of set S is a non-empty collection of pairwise disjoint and
non-empty subsets of S referred to as blocks,
π = {B1,B2, . . .Bn |

⋃n
i=1 Bi = S}

The set of partitions of a set S is denoted as PART(S)

Definition

If π = {B1,B2, . . .Bn |
⋃n

i=1 Bi = S} ∈ PART(S) is a partition of a set S
and β > 0, then its β-entropy, Hβ, is given by:

Hβ(π) =
1

1− 21−β

(
1−

n∑
i=1

(
|Bi |
|S |

)β
)

(3)
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Some Special β

Shannon Entropy:

lim
β→1

Hβ(π) = −
n∑

i=1

|Bi |
|S |

log
|Bi |
|S |

(4)

Gini Index:

H2(π) = 2

(
1−

n∑
i=1

(
|Bi |
|S |

)2
)
. (5)

Kaixun Hua – Data Mining Research Lab (UMass Boston) Clusterability, Model Selection and Evaluation 23 / 45



Conditional Entropy and Metric on PART(S)

Definition

If π = {B1,B2, . . .Bn} ∈ PART(S) and C ⊆ S , The trace of π on C is the
partition πC ∈ PART(C ) given by

πC = {Bi ∩ C | Bi ∈ π,Bi ∩ C 6= ∅}

Theorem

If π = {B1,B2, . . .Bn} and σ = {C1,C2, . . .Cn} are two partitions in
PART(S), then

Hβ(π ∧ σ) = Hβ(σ) +
m∑
j=1

(
|Cj |
|S |

)β

Hβ(πCj
)

= Hβ(π) +
m∑
j=1

(
|Bj |
|S |

)β

Hβ(σBj
)
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Conditional Entropy and Metric on PART(S)

Definition

The conditional β-entropy Hβ(π|σ) is defined as

Hβ(π|σ) = Hβ(π ∧ σ)− Hβ(σ)

Theorem

The function dβ : PART(S)× PART(S)→ R defined by

dβ(π, σ) = Hβ(π|σ) + Hβ(σ|π)

is a metric on PART(S).
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Imbalanced Partitions

Let hβ : [0, 1] −→ R be defined by hβ(x) = x−xβ
1−21−β where β > 0 and

β 6= 1.

Theorem

hβ is a concave function for β > 0 and β 6= 1.

We can rewrite the β-entropy as follows

Hβ(π) =
1

1− 21−β

(
1−

n∑
i=1

(
|Bi |
|S |

)β
)

=
n∑

i=1

hβ

(
|Bi |
|S |

)
,
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Behavior of function hβ(x)

Figure 28: Behavior of Function hβ(x) with different β. Here,

x = |Bi |
|S| ∈ [0, 1], i ∈ [1, n]

Kaixun Hua – Data Mining Research Lab (UMass Boston) Clusterability, Model Selection and Evaluation 27 / 45



Sum of Square-Errors

Let S be the set of objects to be clustered. We assume that S is a subset
of Rn equipped with the Euclidean metric.

Definition

The center cC of a subset C of S is defined as cC = 1
|C |
∑
{o | o ∈ C}.

For a partition π = {C1,C2, . . . ,Cm} of S the sum of square errors sse of
π is defined as

sse(π) =
m∑
i=1

∑
o∈Ci

d2(o, cCi
). (6)
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Current Approaches

Intuitively, the optimal choice of k will strike a balance between the
cohesion of data, and sum of square errors:

I Elbow Method

I AIC: argmink [−2L(k) + 2kd ]

I BIC: argmink [−2L(k) + ln(n)kd ]

where k is the number of clusters, L(·) is the likelihood function of model
with parameter k , d represents the dimension and n is the data size.
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Dual Criteria Compromise

We aim to look for the optimal model that minimize both the model
distortion and model complexity simultaneously [HS18, HS19].

π ιS · · · ωS

Model Complexity Hβ(π) 1−n1−β

1−21−β ↘ 0

Model Distortion sse(π) 0 ↗
∑

o∈S ‖ o− c ‖2

I ιS has the most balanced clusters and it is the least cohesive
clustering;

I ωS is the least balanced cluster but it is the most cohesive clustering.
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Multi-objective Optimization and Pareto Optimal

I Decisions should be taken in the presence of trade-offs between two
conflicting objectives.

I Model selection can be treated as a multi-objective optimization
problem.

Definition

Let π, σ ∈ PART(S). The partition σ dominates π if H(σ) 6 H(π) and
sse(σ) 6 sse(π).
A partition τ ∈ PART(S) is Pareto optimal if there is no other partition
that dominates τ .

If a partition π is Pareto optimal, then it is no worse than another
partitions from the point of view of (H(π) and sse(π)) and is better in at
least one of these criteria.
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Pareto Front

Definition

The set of partitions that are not dominated by other partitions is the
Pareto front.

It allow us to define a natural number of clusters using the Pareto front of
the following bi-criterial problem.
Let F : PART(S) −→ R2, where

F(π) = (H(π), sse(π))

where π ∈ PART(S).
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Pareto Front

Examples for Iris and Libras dataset. We apply k-means clustering
algorithm. Both are normalized into [0, 1].

Figure 29: Pareto Front for Iris
Dataset

Figure 30: Pareto Front for Libras
Dataset
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Hypervolume

A popular indicator for multi-objective optimization problem. It estimates
the closeness of the estimated solutions to the true Pareto front.

Definition

The hypervolume that corresponds to a partition π is

HV(π) = (H(ιS)− H(π))(sse(ωS)− sse(π))

The optimal partition for a dataset is obtained as

πopt = argmax
π

HV(π)
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k-means, Hierarchical Clustering and Contour
Curves [HS19]

I If a natural clustering structure exists, two different clustering
algorithms will generate similar clustering results with optimal number
of clusters.

I We evaluate partitional models with the contour curves of the
distance between partitions generated from k-means and ward-linkage
hierarchical clustering algorithm.

I The sink on the contour map can be an indicator of the “natural”
number of clusters.
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k-means, Hierarchical Clustering and Contour Curves

Examples of the contours of Iris dataset and an artificial dataset with 10
Gaussian Distributed clusters.

0.012

Figure 31: 10-cluster Artificial Dataset

0.04

Figure 32: Iris Dataset
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Empirical Study

Synthetic datasets for testing:

I clusters that are well
separated;

I clusters that are well separated
but closer with each other;

I clusters that have different
density;

I clusters that have different
sizes and number of points;

I clusters that overlap.

Real datasets for testing:

I Iris Data

I Wine Recognition Data

I LIBRAS Movement Database

I Pen-Based Recognition of
Handwritten Digits

I E. Coli Dataset

I Vowel Recognition

I Poker Dataset
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Empirical Study–Synthetic datasets

0.015

Figure 33: Data
Structure

0.015

Figure 34: Contour
Map

Figure 35: HV-index

Kaixun Hua – Data Mining Research Lab (UMass Boston) Clusterability, Model Selection and Evaluation 38 / 45



Empirical Study–Synthetic datasets

0.03

Figure 36: Data
Structure

0.075

Figure 37: Contour
Map

Figure 38: HV-index
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Empirical Study–Synthetic datasets

Figure 39: Data
Structure

0.13

Figure 40: Contour
Map

Figure 41: HV-index
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Empirical Study–Results

Table 2: Comparison between the number of clusters for datasets; g represents
the number of clusters obtained by using the log-likelihood function of Gaussian
Mixture Model while k represents those numbers when using the sum of squared
errors.

Data Sets β
natural number of clusters(CPU Times[seconds])

Gap Stat. Jump Mthd. Pred. Strgth. AIC(g/k) BIC(g/k) RIM HV Index Cntr. Mthd.

Well Sep. I(5) 1.00 5(3.92) 5(0.87) 3(2.90) 8(1.23)/30(0.29) 8(1.14)/30(0.34) 12(976) 5(0.92) 5
Well Sep. II(5) 1.00 5(4.04) 5(0.92) 5(2.82) 13(1.19)/30(1.11) 5(1.23)/30(1.12) 6(977) 5(0.90) 5
Diff. Dens.(5) 1.00 5(4.13) 5(0.97) 5(2.96) 5(1.30)/30(0.31) 5(1.11)/30(0.37) 4(968) 5(0.95) 5
Skw. Dist.(5) 1.00 5(4.17) 30(1.06) 5(3.05) 6(1.49)/30(0.32) 5(1.13)/30(0.33) 3(968) 5(0.99) 5

Ovrlp.(5) 0.95 3(4.26) 3(1.09) 5(2.87) 6(1.34)/30(0.41) 5(1.19)/30(0.41) 1(960) 5(0.97) 3/6
Iris(3) 1.00 4(0.65) 24(0.33) 3(1.60) 30(0.11)/5(0.48) 30(0.13)/4(0.53) 25(962) 3(0.55) 3

Wine(3) 1.0 1(1.22) 28 (0.93) 3 (2.01) 30(0.59)/30(0.26) 7(0.50)/30(0.50) 19(964) 4 (0.65) 8
Libras(15) 1.00 6(9.65) 30(1.96) 2(5.52) 30(1.66)/2(1.27) 30(1.42)/1(1.09) 13(964) 13(1.95) 15/16

Ecoli(8) 0.9 6 (1.90) 25 (1.32) 3 (1.96) 30(0.51)/2(0.12) 11(0.38)/1(0.41) 9(967) 7(0.65) 7
Vowel(11) 0.8 4 (5.67) 29 (1.53) 4 (2.9) 30(1.21)/27(0.32) 30(1.07)/19(0.33) 5(983) 9(1.35) 13

PenDigits(10) 1.20 22(206.2) 29(19.41) 6(25.10) 30(7.52)/30(5.53) 30(7.16)/30(5.38) - 9(9.27) 15
Poker(1-9)(9) 1.4 4 (1889) 29 (1574) 2 (2080) 30(256)/30(926) 30(240)/30(915) - 10(477) -
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Empirical Study–Imbalanced Clustering Structure

β selection for imbalanced data sets: the more imbalanced the data
clusters are, the lower β we should choose.
Three datasets are used for experiments; during the experiments a portion
of one cluster from each dataset is eliminated:

I skewed distribution synthetic dataset;

I Iris data;

I Wine recognition data.
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Empirical Study–Imbalanced Clustering Structure

Range of β that yields correct k clusters for the modified dataset:

Figure 42: k = 5,
Synthetic Data

Figure 43: k = 3, Iris
Data

Figure 44: k = 3, Wine
Data
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Thank you
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