Clusterability, Model Selection and Evaluation

Kaixun Hua - Data Mining Research Lab

Advisor: Prof. Dan A. Simovici

UMass Boston

Content

- Introduction
- Ultrametricity and Clusterability
 - Ultrametrics
 - The Definition of Clusterability
 - Empirical Study
 - Clustering by Elevating Ultrametricity
- 3 Model Selection and Number of Clusters
 - Generalized Partitional Entropy
 - Dual Criteria Compromise
 - k-means, Hierarchical Clustering and Contour Curves
 - Empirical Study

Introduction

Clustering is the prototypical unsupervised learning activity which consists in identifying cohesive and well-differentiated groups of records in data.

- increasing needs of clustering massive datasets;
 running clustering algorithms is expensive (especially for hierarchical and spectral clustering);
- data exist without any obvious clustering structure;
 however, if a clustering algorithm is applied, an irrelevant clustering structure may be returned;
- no ground truth in many practical clustering tasks (data is not labeled);
 different clustering algorithms give different (often implicit) measures of clustering quality;
- ambiguity exists for picking correct number of clusters; in practical, it is even harder for datasets with heavily imbalanced cluster structures.

Introduction

Our works tend to accomplish the following tasks:

- ▶ Deciding whether it is worth to do clustering on a dataset
- Improving the clustering result by twisting the distance space of dataset
- Determining the number of clusters in a dataset
- ▶ Unsupervised evaluation of clustering result

Clusterability Concept

A data set is clusterable if such groups exist; however, due to the variety in data distributions and the inadequate formalization of certain basic notions of clustering, determining data clusterability before applying specific clustering algorithms is a difficult task.

- ▶ Data clusterability is the existence of clustering (grouping) structure in data. This means that data can be partitioned in groups containing similar objects such that the groups are well-differentiated.
- ▶ We seek a measure of clusterability that quantifies the degree of how much inherent cluster structure the data possess.
- ▶ If a dissimilarity defined on a data set is close to an ultrametric it is natural to assume that the data set is clusterable.

Ultrametrics

Let $S \subseteq \mathbb{R}^k$ be a finite k-dimensional data set. An <u>ultrametric</u> is a mapping $d: S \times S \to \mathbb{R}_{>0}$, which satisfies the following properties:

- ▶ Identity: d(x,x) = 0;
- ▶ Symmetry: d(x, y) = d(y, x)
- ► Triangle Inequality:

$$d(x,y) \le \max\{d(y,z),d(x,z)\}, \forall x,y,z \in S,\tag{1}$$

r-spheric clustering

Definition

A *closed sphere* in (S, d) is a set B[x, r] defined by

$$B[x,r] = \{ y \in S \mid d(x,y) \leqslant r \}.$$

When (S, d) is an ultrametric space two spheres having the same radius r in (S, d) are either disjoint or coincide.

Definition

The collection of closed spheres of radius r in S, $C_r = \{B[x,r] \mid r \in S\}$ is a partition of S; we refer to this partition as an r-spheric clustering of (S,d).

Every *r*-spheric clustering in an ultrametric space is a *perfect clustering* (all of its in-cluster distances are smaller than all of its between-cluster distances).

A Special Matrix Product

Let $\mathbb{P}_{\infty} = \{x \in \mathbb{R} \mid x \geqslant 0\} \cup \{\infty\}$, we define " \vee " and " \wedge " be the binary operation on \mathbb{P}_{∞} as follows:

Definition

$$x \lor y = \min\{x, y\} \text{ and } x \land y = \max\{x, y\}$$

Suppose $A \in \mathbb{P}_{\infty}^{m \times n}$ and $B \in \mathbb{P}_{\infty}^{n \times p}$,

We define a new product of two matrices as follows:

Definition

$$C = A \otimes B \in \mathbb{P}_{\infty}^{m \times p}$$
 such that,

$$c_{ij} = \bigvee_{k=1}^{n} (a_{ik} \wedge b_{kj}) = \min\{\max\{a_{ik}, b_{kj}\} \mid 1 \leqslant k \leqslant n\}$$
 (2)

Ultrametricity and Matrix Product

Definition

A is an ultrametric matrix if A is symmetric, $a_{ii} = 0$ and $a_{ij} \leq \max\{a_{ik}, a_{kj}\}$ for $1 \leq i, j, k \leq n$.

If we define $A \leq B$ if $a_{ij} \geqslant b_{ij}$, we have the following consequence:

Theorem

If $A \in \mathbb{P}^{n \times n}$ is a dissimilarity matrix there exists $m \in \mathbb{N}$ such that

$$A \preceq A^2 \preceq \cdots \preceq A^m = A^{m+1} = \cdots = A^{m+d}, \forall d > 0$$

and A^m is an ultrametric matrix.

Ultrametricity

The *ultrametricity* of a matrix $A \in \mathbb{P}^{n \times n}$ is defined as follows:

Definition

Let $A \in \mathbb{P}^{n \times n}$ be the dissimilarity matrix of S, and m(A) is the least integer that A^m is the ultrametric matrix, then the *ultrametricity* $\mathbf{u}(A) = \frac{n}{m}$

We refer to m(A) as the *stabilization power* of the matrix A. If m(A) = 1, A is ultrametric itself and u(A) = n.

The Definition of Clusterability [SH19]

Conjecture: a dissimilarity space (D, d) is more clusterable if the dissimilarity is closer to an ultrametric, hence if $m(A_D)$ is small.

Definition

The *clusterability of a data set D* is the number

$$\mathsf{clust}(D) = \frac{n}{m(A_D)},$$

where n = |D|, A_D is the dissimilarity matrix of D and $m(A_D)$ is the stabilization power of A_D .

The lower the stabilization power, the closer A is to an ultrametric matrix, and thus, the higher the clusterability of the data set.

Empirical Study

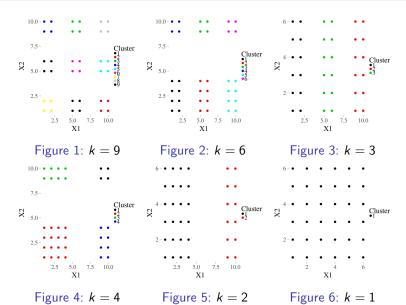
Lattice-like Toy Data Generation:

- Generate series of datasets by assigning data points on the positions with integer pairs.
- Create dissimilarity matrix by Manhattan distance
- Move data points to different locations to generate distinct structured clusterings.

Real Data Set:

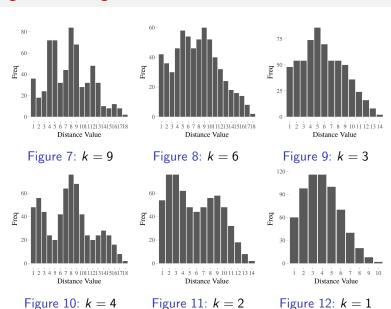
- ▶ Iris, Swiss, Faithful, Rivers, Trees
- ▶ USAJudgeRatings, USArrests, Attitude, Cars

Experiments - Lattice Toy Data



Kaixun Hua – Data Mining Research Lab (UMass Boston)

Histogram of Original Distance



Histogram of Distance after Power Operation

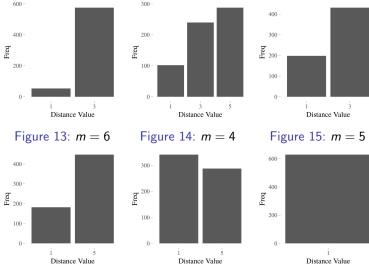


Figure 16: *m*= 5

Figure 17: m = 7

Figure 18: *m*= 9

Distance Collapse

Given dataset with 4 perfect-uniform cluster and generated with the same scheme above:

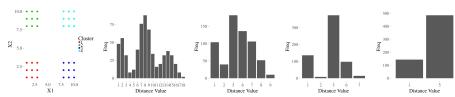


Figure 19: Original dataset with four clusters

Figure 20: Histogram of distinct value in the original matrix

Figure 21: Histogram of distinct value in the matrix after one multiplication

Figure 22: Histogram of distinct value in the matrix after two multiplication

Figure 23: Histogram of distinct value in the matrix after three multiplication

Validation on Real Data Sets

Table 1: All clusterable datasets have values greater than 5 for their clusterability; all non-clusterable datasets have values no larger than 5.

Dataset	n	Dip	Silv.	$m(A_D)$	clust(D)
iris	150	0.0000	0.0000	14	10.7
swiss	47	0.0000	0.0000	6	7.8
faithful	272	0.0000	0.0000	31	8.7
rivers	141	0.2772	0.0000	22	6.4
attitude	30	0.9040	0.9449	6	5
trees	31	0.3460	0.3235	7	4.4
USAJudgeRatings	43	0.9938	0.7451	10	4.3
USArrests	50	0.9394	0.1897	15	3.3
cars	50	0.6604	0.9931	15	3.3

Clustering by Elevating Clusterability

- ▶ We can improve the quality of clustering result by increasing the ultrametricity of its dissimilarity matrix.
- ▶ By definition, the new dissimilarity matrix will be more clusterable.
- ▶ Better performance can be achieved on the powered dissimilarity matrix(ultrametric distance matrix)

Entangled spirals dataset

Clustering by promoting ultrametricity (clusterability) *k*-medoids clustering algorithm are performed on two dissimilarity matrices:

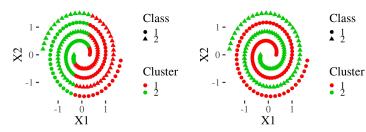


Figure 24: Clustering Result on Spiral dataset based on original dissimilarity matrix

Figure 25: Clustering Result on Spiral dataset based on the maximum ultrametricity matrix

Entangled spiral dataset

Distance matrix of dataset with two entangled spirals with total of 200 data points

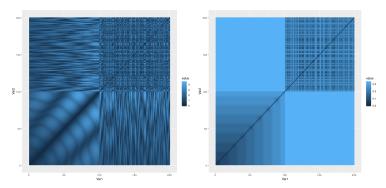


Figure 26: Original Distance matrix on Spiral dataset

Figure 27: Maximum ultrametricity Distance matrix on Spiral dataset

Model Selection

Difficulties in model selection in clustering:

- ▶ most clustering algorithms need a parameter *k* that specifies the number of clusters to detect;
- ▶ the definition of an optimal model is ambiguous;
- clustering is even more difficult if the clusters are heavily imbalanced.

Generalized Partitional Entropy

Definition

A partition of set S is a non-empty collection of pairwise disjoint and non-empty subsets of S referred to as blocks,

$$\pi = \{B_1, B_2, \dots B_n \mid \bigcup_{i=1}^n B_i = S\}$$

The set of partitions of a set S is denoted as PART(S)

Definition

If $\pi = \{B_1, B_2, \dots B_n \mid \bigcup_{i=1}^n B_i = S\} \in \mathsf{PART}(S)$ is a partition of a set S and $\beta > 0$, then its β -entropy, H_{β} , is given by:

$$H_{\beta}(\pi) = \frac{1}{1 - 2^{1 - \beta}} \left(1 - \sum_{i=1}^{n} \left(\frac{|B_i|}{|S|} \right)^{\beta} \right) \tag{3}$$

Some Special β

Shannon Entropy:

$$\lim_{\beta \to 1} H_{\beta}(\pi) = -\sum_{i=1}^{n} \frac{|B_i|}{|S|} \log \frac{|B_i|}{|S|} \tag{4}$$

Gini Index:

$$H_2(\pi) = 2\left(1 - \sum_{i=1}^n \left(\frac{|B_i|}{|S|}\right)^2\right).$$
 (5)

Conditional Entropy and Metric on PART(S)

Definition

If $\pi = \{B_1, B_2, \dots B_n\} \in \mathsf{PART}(S)$ and $C \subseteq S$, The trace of π on C is the partition $\pi_C \in \mathsf{PART}(C)$ given by

$$\pi_{C} = \{B_{i} \cap C \mid B_{i} \in \pi, B_{i} \cap C \neq \emptyset\}$$

Theorem

If $\pi = \{B_1, B_2, \dots B_n\}$ and $\sigma = \{C_1, C_2, \dots C_n\}$ are two partitions in PART(S), then

$$H_{\beta}(\pi \wedge \sigma) = H_{\beta}(\sigma) + \sum_{j=1}^{m} \left(\frac{|C_{j}|}{|S|}\right)^{\beta} H_{\beta}(\pi_{C_{j}})$$
$$= H_{\beta}(\pi) + \sum_{j=1}^{m} \left(\frac{|B_{j}|}{|S|}\right)^{\beta} H_{\beta}(\sigma_{B_{j}})$$

Conditional Entropy and Metric on PART(S)

Definition

The conditional β -entropy $H_{\beta}(\pi|\sigma)$ is defined as

$$H_{\beta}(\pi|\sigma) = H_{\beta}(\pi \wedge \sigma) - H_{\beta}(\sigma)$$

Theorem

The function $d_{\beta}: \mathsf{PART}(S) \times \mathsf{PART}(S) \to \mathbb{R}$ defined by

$$d_{eta}(\pi,\sigma) = H_{eta}(\pi|\sigma) + H_{eta}(\sigma|\pi)$$

is a metric on PART(S).

Imbalanced Partitions

Let $h_{\beta}:[0,1]\longrightarrow \mathbb{R}$ be defined by $h_{\beta}(x)=\frac{x-x^{\beta}}{1-2^{1-\beta}}$ where $\beta>0$ and $\beta\neq 1$.

Theorem

 h_{β} is a concave function for $\beta > 0$ and $\beta \neq 1$.

We can rewrite the β -entropy as follows

$$H_{\beta}(\pi) = \frac{1}{1 - 2^{1 - \beta}} \left(1 - \sum_{i=1}^{n} \left(\frac{|B_i|}{|S|} \right)^{\beta} \right)$$
$$= \sum_{i=1}^{n} h_{\beta} \left(\frac{|B_i|}{|S|} \right),$$

Behavior of function $h_{\beta}(x)$

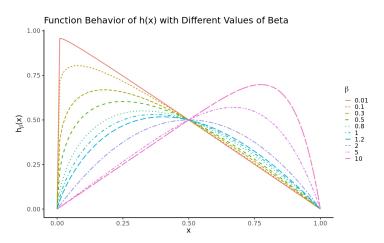


Figure 28: Behavior of Function $h_{\beta}(x)$ with different β . Here, $x = \frac{|B_i|}{|S|} \in [0, 1], i \in [1, n]$

Sum of Square-Errors

Let S be the set of objects to be clustered. We assume that S is a subset of \mathbb{R}^n equipped with the Euclidean metric.

Definition

The center \mathbf{c}_C of a subset C of S is defined as $\mathbf{c}_C = \frac{1}{|C|} \sum {\{\mathbf{o} \mid \mathbf{o} \in C\}}$. For a partition $\pi = \{C_1, C_2, \dots, C_m\}$ of S the sum of square errors sse of π is defined as

$$sse(\pi) = \sum_{i=1}^{m} \sum_{\mathbf{o} \in C_i} d^2(\mathbf{o}, \mathbf{c}_{C_i}).$$
(6)

Current Approaches

Intuitively, the optimal choice of k will strike a balance between the cohesion of data, and sum of square errors:

- Elbow Method
- ▶ AIC: $\operatorname{argmin}_{k}[-2L(k) + 2kd]$
- ▶ BIC: $\operatorname{argmin}_{k}[-2L(k) + \ln(n)kd]$

where k is the number of clusters, $L(\cdot)$ is the likelihood function of model with parameter k, d represents the dimension and n is the data size.

Dual Criteria Compromise

We aim to look for the optimal model that minimize both the model distortion and model complexity simultaneously [HS18, HS19].

	π	ls		$\omega_{\mathcal{S}}$
Model Complexity	$\mathcal{H}_{eta}(\pi)$	$\frac{1-n^{1-\beta}}{1-2^{1-\beta}}$	×	0
Model Distortion	$sse(\pi)$	0	7	$\sum_{\mathbf{o} \in S} \ \mathbf{o} - \mathbf{c} \ ^2$

- ▶ *t*_S has the most balanced clusters and it is the least cohesive clustering;
- \blacktriangleright ω_S is the least balanced cluster but it is the most cohesive clustering.

Multi-objective Optimization and Pareto Optimal

- ▶ Decisions should be taken in the presence of trade-offs between two conflicting objectives.
- ▶ Model selection can be treated as a multi-objective optimization problem.

Definition

Let $\pi, \sigma \in \mathsf{PART}(S)$. The partition σ dominates π if $H(\sigma) \leqslant H(\pi)$ and $\mathsf{sse}(\sigma) \leqslant \mathsf{sse}(\pi)$.

A partition $\tau \in PART(S)$ is *Pareto optimal* if there is no other partition that dominates τ .

If a partition π is Pareto optimal, then it is no worse than another partitions from the point of view of $(H(\pi))$ and $sse(\pi)$ and is better in at least one of these criteria.

Pareto Front

Definition

The set of partitions that are not dominated by other partitions is the *Pareto front*.

It allow us to define a natural number of clusters using the Pareto front of the following bi-criterial problem.

Let $\mathbf{F} : \mathsf{PART}(S) \longrightarrow \mathbb{R}^2$, where

$$\mathbf{F}(\pi) = (H(\pi), \operatorname{sse}(\pi))$$

where $\pi \in PART(S)$.

Pareto Front

Examples for Iris and Libras dataset. We apply k-means clustering algorithm. Both are normalized into [0,1].

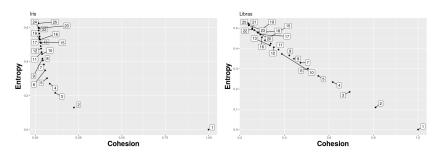


Figure 29: Pareto Front for Iris Dataset

Figure 30: Pareto Front for Libras Dataset

Hypervolume

A popular indicator for multi-objective optimization problem. It estimates the closeness of the estimated solutions to the true Pareto front.

Definition

The *hypervolume* that corresponds to a partition π is

$$\mathsf{HV}(\pi) = (H(\iota_S) - H(\pi))(\mathsf{sse}(\omega_S) - \mathsf{sse}(\pi))$$

The optimal partition for a dataset is obtained as

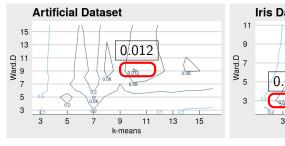
$$\pi_{opt} = \operatorname*{argmax}_{\pi} \mathsf{HV}(\pi)$$

k-means, Hierarchical Clustering and Contour Curves [HS19]

- ▶ If a natural clustering structure exists, two different clustering algorithms will generate similar clustering results with optimal number of clusters.
- ▶ We evaluate partitional models with the contour curves of the distance between partitions generated from *k*-means and ward-linkage hierarchical clustering algorithm.
- ► The sink on the contour map can be an indicator of the "natural" number of clusters.

k-means, Hierarchical Clustering and Contour Curves

Examples of the contours of *Iris* dataset and an artificial dataset with 10 Gaussian Distributed clusters.



Iris Dataset

11
9
7
7
5
0.04
3
5
7
9
11
k-means

Figure 31: 10-cluster Artificial Dataset

Figure 32: Iris Dataset

Empirical Study

Synthetic datasets for testing:

- clusters that are well separated;
- clusters that are well separated but closer with each other;
- clusters that have different density;
- clusters that have different sizes and number of points;
- clusters that overlap.

Real datasets for testing:

- Iris Data
- Wine Recognition Data
- LIBRAS Movement Database
- Pen-Based Recognition of Handwritten Digits
- ► E. Coli Dataset
- Vowel Recognition
- Poker Dataset

Empirical Study-Synthetic datasets

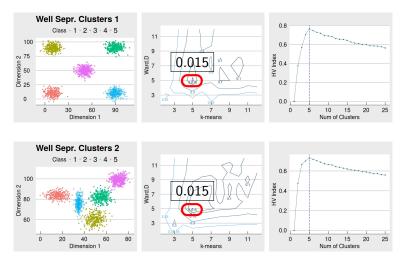


Figure 33: Data Structure

Figure 34: Contour Map

Figure 35: HV-index

Empirical Study-Synthetic datasets

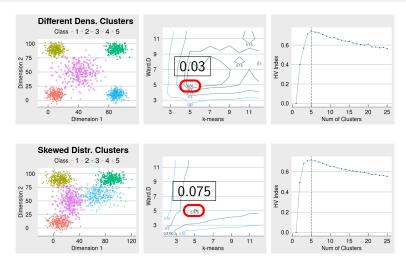
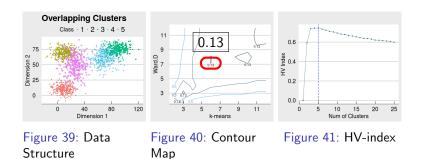


Figure 36: Data Structure

Figure 37: Contour Map

Figure 38: HV-index

Empirical Study-Synthetic datasets



Empirical Study-Results

Table 2: Comparison between the number of clusters for datasets; g represents the number of clusters obtained by using the log-likelihood function of Gaussian Mixture Model while k represents those numbers when using the sum of squared errors.

Data Sets β	9	natural number of clusters(CPU Times[seconds])							
	ρ	Gap Stat.	Jump Mthd.	Pred. Strgth.	AIC(g/k)	BIC(g/k)	RIM	HV Index	Cntr. Mthd.
Well Sep. I(5)	1.00	5(3.92)	5(0.87)	3(2.90)	8(1.23)/30(0.29)	8(1.14)/30(0.34)	12(976)	5 (0.92)	5
Well Sep. II(5)	1.00	5(4.04)	5(0.92)	5(2.82)	13(1.19)/30(1.11)	5(1.23)/30(1.12)	6(977)	5 (0.90)	5
Diff. Dens.(5)	1.00	5(4.13)	5(0.97)	5(2.96)	5(1.30)/30(0.31)	5(1.11)/30(0.37)	4(968)	5 (0.95)	5
Skw. Dist.(5)	1.00	5(4.17)	30(1.06)	5(3.05)	6(1.49)/30(0.32)	5(1.13)/30(0.33)	3(968)	5 (0.99)	5
Ovrlp.(5)	0.95	3(4.26)	3(1.09)	5 (2.87)	6(1.34)/30(0.41)	5(1.19)/30(0.41)	1(960)	5 (0.97)	3/6
Iris(3)	1.00	4(0.65)	24(0.33)	3(1.60)	30(0.11)/5(0.48)	30(0.13)/4(0.53)	25(962)	3 (0.55)	3
Wine(3)	1.0	1(1.22)	28 (0.93)	3 (2.01)	30(0.59)/30(0.26)	7(0.50)/30(0.50)	19(964)	4 (0.65)	8
Libras(15)	1.00	6(9.65)	30(1.96)	2(5.52)	30(1.66)/2(1.27)	30(1.42)/1(1.09)	13(964)	13 (1.95)	15/16
Ecoli(8)	0.9	6 (1.90)	25 (1.32)	3 (1.96)	30(0.51)/2(0.12)	11(0.38)/1(0.41)	9 (967)	7 (0.65)	7
Vowel(11)	0.8	4 (5.67)	29 (1.53)	4 (2.9)	30(1.21)/27(0.32)	30(1.07)/19(0.33)	5(983)	9(1.35)	13
PenDigits(10)	1.20	22(206.2)	29(19.41)	6(25.10)	30(7.52)/30(5.53)	30(7.16)/30(5.38)	-	9 (9.27)	15
Poker(1-9)(9)	1.4	4 (1889)	29 (1574)	2 (2080)	30(256)/30(926)	30(240)/30(915)	-	10(477)	-

Empirical Study-Imbalanced Clustering Structure

 β selection for imbalanced data sets: the more imbalanced the data clusters are, the lower β we should choose.

Three datasets are used for experiments; during the experiments a portion of one cluster from each dataset is eliminated:

- skewed distribution synthetic dataset;
- Iris data;
- Wine recognition data.

Empirical Study-Imbalanced Clustering Structure

Range of β that yields correct k clusters for the modified dataset:

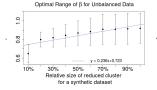


Figure 42: k = 5, Synthetic Data

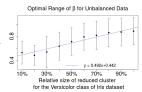


Figure 43: k = 3, Iris Data

Figure 44: k = 3, Wine Data

Reference

Kaixun Hua and Dan A Simovici.

Dual criteria determination of natural clustering structures in data. In *International Symposium on Symbolic and Numeric Algorithms for Scientific Computing.* IEEE, 2018.

Kaixun Hua and Dan A Simovici.

On finding natural clustering structures in data.

In *Transactions on Pattern Analysis and Machine Intelligence*. Under Review, 2019.

Dan A Simovici and Kaixun Hua.

Data ultrametricity and clusterability.

In International Conference on Mathematical Models & Computational Techniques in Science & Engineering. To be published, 2019.

THANK YOU