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Abstract. The increasing needs of clustering massive datasets and the high cost of running
clustering algorithms poses difficult problems for users. In this context it is important to
determine if a data set is clusterable, that is, it may be partitioned efficiently into well-
differentiated groups containing similar objects. We approach data clusterability from an
ultrametric-based perspective. A novel approach to determine the ultrametricity of a dataset is
proposed via a special type of matrix product, which allows us to evaluate the clusterability of
the dataset. Furthermore, we show that by applying our technique to a dissimilarity space will
generate the sub-dominant ultrametric of the dissimilarity.

1. Introduction
Clustering is the prototypical unsupervised learning activity which consists in identifying
cohesive and well-differentiated groups of records in data. A data set is clusterable if such
groups exist; however, due to the variety in data distributions and the inadequate formalization
of certain basic notions of clustering, determining data clusterability before applying specific
clustering algorithms is a difficult task.

Evaluating data clusterability before the application of clustering algorithms can be very
helpful because clustering algorithms are expensive. However, many such evaluations are
impractical because they are NP-hard, as shown in [1]. Other notions define data as clusterable
when the minimum between-cluster separation is greater than the maximum intra-cluster
distance [2], or when each element is closer to all elements in its cluster than to all other
data [3].

Several approaches exist in assessing data clusterability. The main hypothesis of [4] is
that clusterability can be inferred from an one-dimensional view of pairwise distances between
objects. Namely, clusterability is linked to the multimodality of the histogram of inter-object
dissimilarities. The basic assumption is that “the presence of multiple modes in the set
of pairwise dissimilarities indicates that the original data is clusterable.” Multimodality is
evaluated using the Dip and Silverman statistical multimodality tests, an approach that is
computationally efficient.

Alternative approaches to data clusterability are linked to the feasibility of producing a
clustering; a corollary of this assumption is that “data that are hard to cluster do not have a
meaningful clustering structure” [5]. Other approaches to clusterability are identified based on
clustering quality measures, and on loss function optimization [1, 6, 7, 8, 3, 9].

We propose a novel approach that relates data clusterability to the extent to which the
dissimilarity defined on the data set relate to a special ultrametric defined on the set.



The paper is structured as follows. In Section 2 we introduce dissimilarities and an
ultrametrics that play a central role in our definition of clusterability. A special matrix product
on matrices with non-negative elements that allow an efficient computation of the subdominant
ultrametric is introduced. In Section 3 a measure of clusterability that is based on the iterative
properties of the dissimilarity matrix is defined. We provide experimental evidence on the
effectiveness of the proposed measure through several experiments on small artificial data sets
in Section 4. Finally, we present our conclusions and future plans in Section 5.

2. Dissimilarities, Ultrametrics, and Matrices
A dissimilarity on a set S is a mapping d : S × S −→ R such that

(i) d(x, y) > 0 and d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x);

A dissimilarity on S that satisfies the triangular inequality

d(x, y) 6 d(x, z) + d(z, y)

for every x, y, z ∈ S is a metric. If, instead, the stronger inequality

d(x, y) 6 max{d(x, z), d(z, y)}

is satisfied, d is said to be an ultrametric and the pair (S, d) is an ultrametric space.
A closed sphere in (S, d) is a set B[x, r] defined by

B[x, r] = {y ∈ S | d(x, y) 6 r}.

When (S, d) is an ultrametric space two spheres having the same radius r in (S, d) are
either disjoint or coincide [10]. Therefore, the collection of closed spheres of radius r in S,
Cr = {B[x, r] | r ∈ S} is a partition of S; we refer to this partition as an r-spheric clustering of
(S, d).

In an ultrametric space (S, d) every triangle is isosceles. Indeed, let T = (x, y, z) be a
triplet of points in S and let d(x, y) be the least distance between the points of T . Since
d(x, z) 6 max{d(x, y), d(y, z)} = d(y, z) and d(y, z) 6 max{d(y, x), d(x, z)} = d(x, z), it follows
that d(x, z) = d(y, z), so T is isosceles; the two longest sides of this triangle are equal.

It is interesting to note that every r-spheric clustering in an ultrametric space is a perfect
clustering [11]. This means that all of its in-cluster distances are smaller than all of its between-
cluster distances. Indeed, if x, y belong to the same cluster B[u, r] then d(x, y) 6 r. If x ∈ B[u, r]
and y ∈ B[v, r], where B[u, r] ∩ B[v, r] = ∅, then d(v, x) > r, d(y, v) 6 r and this implies
d(x, y) = d(x, v) > r because the triangle (x, y, v) is isosceles and d(y, v) is not the longest side
of this triangle.

Example 2.1. Let S = {xi | 1 6 i 6 8} and let (S, d) be the ultrametric space, where the
ultrametric d is defined by the following table:

d(xi, xj) x1 x2 x3 x4 x5 x6 x7 x8
x1 0 4 4 10 10 16 16 16
x2 4 0 4 10 10 16 16 16
x3 4 4 0 10 10 16 16 16
x4 10 10 10 0 6 16 16 16
x5 10 10 10 6 0 16 16 16
x6 16 16 16 16 16 0 4 4
x7 16 16 16 16 16 4 0 4
x8 16 16 16 16 16 4 4 0



The closed spheres of this spaces are:

B[xi, r] =


{xi} for r < 4,

{x1, x2, x3} for 4 6 r < 10,

{x1, x2, x3, x4, x5} for 10 6 r < 16,

S for r = 16,

for 1 6 i 6 3,

B[xi, r] =


{xi} for r < 6,

{x4, x6} for 6 6 r < 16,

S for r = 16,

for 4 6 i 6 5,

B[xi, r] =


{xi} for r < 4,

{x6, x7, x8} for 4 6 r < 16,

S for r = 16,

for 6 6 i 6 8.

Based on the properties of spheric clusterings mentioned above meaningful such clusterings
can be produced in linear time in the number of objects. For the ultrametric space mentioned
in Example 2.1, the closed spheres of radius 6 produce the clustering

{x1, x2, x3}, {x4, x5, }, {x6, x7, x8}.

If a dissimilarity defined on a data set is close to an ultrametric it is natural to assume that
the data set is clusterable. We assess the closeness between a dissimilarity d and a special
ultrametric known as the subdominant ultrametric of d using a matrix approach.

Let S be a set. Define a partial order “6” on the set of definite dissimilarities DS by d 6 d′

if d(x, y) 6 d′(x, y) for every x, y ∈ S. It is easy to verify that (DS ,6) is a poset.
The set US of ultrametrics on S is a subset of DS .

Theorem 2.2. Let {di ∈ US | i ∈ I} be a collection of ultrametrics on the set S. Then, the
mapping d : S × S −→ R>0 defined as

d(x, y) = sup{di(x, y) | i ∈ I}

is an ultrametric on S.

Proof. We need to verify only that d(x, y) satisfies the ultrametric inequality d(x, y) 6
max{d(x, z), d(z, y)} for x, y, z ∈ S. Since each mapping di is an ultrametric, for x, y, z ∈ S
we have

di(x, y) 6 max{di(x, z), di(z, y)}
6 max{d(x, z), d(z, y)}

for every i ∈ I. Therefore,

d(x, y) = sup{di(x, y) | i ∈ I}
6 max{d(x, z), d(z, y)},

hence d is an ultrametric on S.



Theorem 2.3. Let d be a dissimilarity on a set S and let Ud be the set of ultrametrics
Ud = {e ∈ US | e 6 d}. The set Ud has a largest element in the poset (US ,6).

Proof. The set Ud is nonempty because the zero dissimilarity d0 given by d0(x, y) = 0 for every
x, y ∈ S is an ultrametric and d0 6 d.

Since the set {e(x, y) | e ∈ Ud} has d(x, y) as an upper bound, it is possible to define the
mapping e1 : S2 −→ R≥0 as e1(x, y) = sup{e(x, y) | e ∈ Ud} for x, y ∈ S. It is clear that e 6 e1
for every ultrametric e. We claim that e1 is an ultrametric on S.

We prove only that e1 satisfies the ultrametric inequality. Suppose that there exist x, y, z ∈ S
such that e1 violates the ultrametric inequality; that is,

max{e1(x, z), e1(z, y)} < e1(x, y).

This is equivalent to

sup{e(x, y) | e ∈ Ud}
> max{sup{e(x, z) | e ∈ Ud},

sup{e(z, y) | e ∈ Ud}}.

Thus, there exists ê ∈ Ud such that

ê(x, y) > sup{e(x, z) | e ∈ Ud}

and
ê(x, y) > sup{e(z, y) | e ∈ Ud}.

In particular, ê(x, y) > ê(x, z) and ê(x, y) > ê(z, y), which contradicts the fact that ê is an
ultrametric.

The ultrametric defined by Theorem 2.3 is known as the maximal subdominant ultrametric
for the dissimilarity d.

The situation is not symmetric with respect to the infimum of a set of ultrametrics because,
in general, the infimum of a set of ultrametrics is not necessarily an ultrametric.

Let P be the set
P = {x | x ∈ R, x > 0} ∪ {∞}.

The usual operations defined on R can be extended to P by defining

x+∞ =∞+ x =∞, x · ∞ =∞ · x =∞

for x > 0.
Let Pm×n be the set of m × n matrices over P. If A,B ∈ Pm×n we have A 6 B if aij 6 bij

that is, if aij > bij for 1 6 i 6 m and 1 6 j 6 n.
If A ∈ Pm×n and B ∈ Pn×p the matrix product C = AB ∈ Pm×p is defined as:

cij = min{max{aik, bkj} | 1 6 k 6 n},

for 1 6 i 6 m and 1 6 j 6 p.
If En ∈ Pn×n is the matrix defined by

(En)ij =

{
0 if i = j,

∞ otherwise,



that is the matrix whose main diagonal elements are 0 and the other elements equal ∞, then
AEn = A for every A ∈ Pm×n and EnA = A for every A ∈ Pn×p.

The matrix multiplication defined above is associative, hence Pn×n is a semigroup with the
identity En. The powers of A are inductively defined as

A0 = En,

An+1 = AnA,

for n ∈ N.
For A,B ∈ Pm×n we define A 6 B as aij 6 Bij for 1 6 i 6 m and 1 6 j 6 n. Note that

if A ∈ Pn×n, then A 6 En. It is immediate that for A,B ∈ Pm×n and C ∈ Pn×p, then A 6 B
implies AC 6 BC; similarly, if C ∈ Pp×m and CA 6 CB.

Let L(A) be the finite set of elements in P that occur in the matrix A ∈ Pn×n. Since he entries
of any power An of A are also included in L(A), the sequence A,A2, . . . , An, . . . is ultimately
periodic because it contains a finite number of distinct matrices.

Let k(A) be the least integer k such that Ak = Ak+d for some d > 0. The sequence of powers
of A has the form

A,A2, . . . , Ak(A)−1, Ak(A), . . . ,

Ak(A)+d−1, Ak(A), . . . , Ak(A)+d−1, . . . ,

where d is the least integer such that Ak(A) = Ak(A)+d. This integer is denoted by d(A).
The set {Ak(A), . . . , Ak(A)+d−1} is a cyclic group with respect to the multiplication.
If (S, d) is a dissimilarity space, where S = {x1, . . . , xn}, the matrix of this space is the matrix

A ∈ Pn×n defined by aij = d(xi, xj) for 1 6 i, j 6 n. Clearly, A is a symmetric matrix and all
its diagonal elements are 0, that is, A 6 En.

If, in addition, we have aij 6 aik + akj for 1 6 i, j, k 6 n, then A is a metric matrix. If this
condition is replaced by the stronger condition aij 6 max{aik + akj} for 1 6 i, j, k 6 n, then A
is ultrametric matrix. Thus, for an ultrametric matrix we have aij 6 min{max{aik + akj} | 1 6
k 6 n}. This amounts to A2 6 A.

Theorem 2.4. If A ∈ Pn×n is a dissimilarity matrix there exists m ∈ N such that

· · · = Am+1 = Am 6 · · · 6 A2 6 A 6 En

and Am is an ultrametric matrix.

Proof. Since A 6 En, the existence of the number m with the property mentioned in the theorem
is immediate since there exists only a finite number of n× n matrices whose elements belong to
L(A). Since Am = A2m, it follows that Am is an ultrametric matrix.

For a matrix A ∈ Pn×n let m(A) be the least number m such that Am = Am+1. We refer to
m(A) as the stabilization power of the matrix A. The matrix Am(A) is denoted by A∗.

The previous considerations suggest defining the ultrametricity of a matrix A ∈ Pn×n with
A 6 En as u(A) = n

m(A) . Since m(A) 6 n, it follows that u(A) > 1. If m(A) = 1, A is

ultrametric itself and u(A) = n.

Theorem 2.5. Let (S, d) be a dissimilarity space, where S = {x1, . . . , xn} having the
dissimilarity matrix A ∈ Pn×n. If m is the least number such that Am = Am+1, then the
mapping δ : S × S −→ P defined by δ(xi, xj) = (Am)ij is the subdominant ultrametric for the
dissimilarity d.



Proof. As we observed, Am is an ultrametric matrix, so δ is an ultrametric on S. Since Am 6 A,
it follows that d(xi, xj) > δ(xi, xj) for all xi, xj ∈ S.

Suppose that C ∈ Pn×n is an ultrametric matrix such that A 6 C, which implies
Am 6 Cm 6 C. Thus, Am dominates any ultrametric that is dominated by d. Consequently,
the dissimilarity defined by Am is the subdominant ultrametric for d.

The subdominant ultrametric of a dissimilarity is usually studied in the framework of weighted
graphs [12].

A weighted graph is a triple (V,E,w), where V is the set of vertices of G, E is a set of
two-element subsets of V called edges. and w : E −→ P is the weight of the edges. If e ∈ E,
then e = {u, v}, where u, v are distinct vertices in V . The weight is extended to all 2-elements
subsets of V as

w({vi, vj}) =

{
w({vi, vj}) if {vi, vj} ∈ E,
∞ otherwise.

A path of length n in a weighted graph is a sequence

℘ = (v0, v1, , v2, . . . , vn−1, vn),

where {vi, vi+1} ∈ E for 0 6 n 6 n− 1.
The set of paths of length n in the graph G is denoted as Pathsn(G). The set of paths of

length n that join the vertex vi to the vertex vj is denoted by Pathsnij . The set of all paths is

Paths(G) =
⋃
n>1

Pathsn(G).

For a weighted graph G = (V,E,w), the extension of the weight function w to Pathsn(G) is
the function M : Paths(G) −→ P defined as

M(℘) = max{w(vi−1, vi) | 1 6 i 6 n},

where ℘ = (v0, v1, . . . , vn). Thus, if ℘′ = ℘e, we have M(℘′) = max{M(℘), w(e)}.
If G = (V,E,w) is a weighted graph, its incidence matrix is the matrix AG ∈ Pn×n, where

n = |V |, defined by (AG)ij = w(vi, vj) for 1 6 i, j 6 n.

Let P
(`)
ij be the set of paths of length ` that join the vertex vi to the vertex vj . Note that

P
(`+1)
ij = {(vi, . . . , vk, vj) |

℘ = (vi, . . . , vk) ∈ P (`)
ik and

vj does not occur in ℘}.

Define a
(`)
ij = min{M(℘) | ℘ ∈ P (`)

ij }. The powers of the incidence matrix of the graph are
given by

a
(`+1)
ik = min{M(℘′) | ℘′ ∈ P (`+1)

ik }
= min{max{M(℘), w(e)} |

℘′ = (vi, . . . , vj , vk) and

℘ ∈ P (`)
ij , e = (vj , vk) ∈ E}

= min
j
{max{a`ij , w(e)} | e = (vj , vk)}.

Thus, we have
(A`

G)ij = min{M(℘) | ℘ ∈ P `
ij}

for 1 6 i, j 6 n.



3. A Measure of Clusterability
We conjecture that a dissimilarity space (D, d) is more clusterable if the dissimilarity is closer
to an ultrametric, hence if m(AD) is small. Thus, it is natural to define the clusterability of a
data set D as the number clust(D) = n

m(AD) where n = |D|, AD is the dissimilarity matrix of D

and m(AD) is the stabilization power of AD. The lower the stabilization power, the closer A is
to an ultrametric matrix, and thus, the higher the clusterability of the data set.

Table 1: All clusterable datasets have values greater than 5 for their clusterability; all non-
clusterable datasets have values no larger than 5.

Dataset n Dip Silv. m(AD) clust(D)
iris 150 0.0000 0.0000 14 10.7
swiss 47 0.0000 0.0000 6 7.8
faithful 272 0.0000 0.0000 31 8.7
rivers 141 0.2772 0.0000 22 6.4
trees 31 0.3460 0.3235 7 4.4
USAJudgeRatings 43 0.9938 0.7451 10 4.3
USArrests 50 0.9394 0.1897 15 3.3
attitude 30 0.9040 0.9449 6 5
cars 50 0.6604 0.9931 15 3.3

Our hypothesis is supported by previous results obtained in [4], where the clusterability
of 9 databases were statistically examined using the Dip and Silverman tests of unimodality.
The approach used in [4] starts with the hypothesis that the presence of multiple modes in
the uni-dimensional set of pairwise distances indicates that the original data set is clusterable.
Multimodality is assessed using the tests mentioned above. The time required by this evaluation
is quadratic in the number of objects.

The first four data sets, iris, swiss, faithful and rivers were deemed to be clusterable; the last
five were evaluated as not clusterable. Tests published in [13] have produced low p-values for the
first four datasets, which is an indication of clusterability. The last five data sets, USArrests,
attitude, cars, and trees produce much larger p-values, which show a lack of clusterability. Table 1
shows that all data sets deemed clusterable by the unimodality statistical test have values of the
clusterability index that exceed 5.

In our approach clusterability of a data set D is expressed primarily through the “stabilization
power” m(AD) of the dissimilarity matrix AD; in addition, the histogram of the dissimilarity
values is less differentiated when the data is not clusterable.

4. Experimental Evidence on Small Artificial Data Sets
Another series of experiments involved a series of small datasets having the same number of
points in R2 arranged in lattices. The points have integer coordinates and the distance between
points is the Manhattan distance.

By shifting the data points to different locations, we create several distinct structured
clusterings that consists of rectangular clusters.

Figures 2 and 3 show an example of a series of datasets with a total of 36 data points. Initially,
the data set has 4 rectangular clusters containing 9 data points each with a gap of 3 distance
units between the clusters. The ultrametricity of the dataset and, therefore, its clusterability
is affected by the number of clusters, the size of the clusters, and the inter-cluster distances.
Figure 3 shows that m(A) reaches its highest value and, therefore, the clusterability is the lowest,
when there is only one cluster in the dataset (see the third row of Figure 3).



Original dataset

Histogram of original Histogram after one multiplication

Histogram after two multiplications Histogram after three multiplications

Figure 1: The process of distance equalization for successive powers of the incidence matrix.
The matrix A3

D is ultrametric.

If points are uniformly distributed, as it is the case in the third row of Figure 3, the clustering
structure disappears and clust(D) has the lowest value.

Histograms are used by some authors [14, 15] to identify the degree of clusterability. Note
however that in the case of the data shown in Figures 2 and 3, the histograms of original
dissimilarity of the dataset do not offer guidance on the clusterability(second column of Figure 2
and 3). By applying the “min-max” power operation on the original matrix, we get an
ultrametric matrix. The new histogram of the ultrametric shows a clear difference on each
dataset. In the third column of Figures 2 and 3, the histogram of the ultrametric matrix for
each dataset shows a decrease of the number of distinct distances after the “power” operation.

If the dataset has no clustering structure the histogram of the ultrametric distance has only
one bar.

The number of pics p of the histogram indicate the minimum number of clusters k in the
ultrametric space specified by the matrix A∗ using the equality

(
k
2

)
= p, so the number of clusters



Lattice with k = 4 Histogram for k = 4 m(AD) = 3, clust(D) = 12

Lattice with k = 6 Histogram for k = 6 m(AD) = 4, clust(D) = 9

Lattice with k = 3 Histogram for k = 3 m(AD) = 5, clust(D) = 7.2

Figure 2: Cluster separation and clusterability.

is
⌈
1+
√
1+8p
2

⌉
. The largest k values of valleys of the histogram indicate the radii of the spheres

in the ultrametric space that define the clusters.
If a data set contains a large number of small clusters, these clusters can be regarded as

outliers and the clusterability of the data set is reduced. This is the case in the third line of
Figure 4 which shows a particular case for 9 clusters with 36 data points. Since the size of each
cluster is too small to be considered as a real cluster, all of them together are merely regarded
as a one cluster dataset with 9 points.

5. Conclusions and Future Work
The special matrix powers of the adjacency matrix of the weighted graph of object dissimilarities
provide a tool for computing the subdominant ultrametric of a dissimilarity and an assessment
of the existence of an underlying clustering structure in a dissimilarity space.

The “power” operation successfully eliminates the redundant information in the dissimilarity
matrix of the dataset but maintains the useful information that can discriminate the cluster



Lattice dataset with k = 4 Histogram for k = 4 m(AD) = 5, clust(D) = 7.2

Lattice dataset with k = 2 Histogram for k = 2 m(AD) = 7, clust(D) = 5.1

Lattice dataset with k = 1 Histogram for k = 1 m(AD) = 9, clust(D) = 4

Figure 3: Cluster separation and clusterability (continued).

Lattice dataset with k = 9 k = 9 m(AD) = 6, clust(D) = 6

Figure 4: Further examples of data sets and their clusterability.



structures of the dataset.
In a series of seminal papers[16, 17, 18], F. Murtagh argued that as the dimensionality of

a linear metric space increases, an equalization process of distances takes place and the metric
of the space gets increasingly closer to an ultrametric. This raises the issues related to the
comparative evaluation (statistical and algebraic) of the ultrametricity of such spaces and of
their clusterability, which we intend to examine in the future.
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