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Abstract—We present a technique grounded in information
theory for determining the “natural” number of clusters existent
in a data set. Our approach involves a bi-criteria optimization
that makes use of the entropy and the cohesion of a partition.
The results are promising and may be applicable in dealing with
clusterings of imbalanced data.

Index Terms—clustering; entropy; clustering cohesion; Pareto
front; hypervolume

I. INTRODUCTION

Clustering is one of the most important topics in unsuper-
vised learning. It aims to partition a set of objects such that
similar objects will be assigned in the same group while those
who are dissimilar will be placed in different groups [1]. This
definition is not entirely satisfactory, because there exist many
similarity measures and the targeted number of groups is not
well-defined. In particular, determining the “natural” number
of clusters in a data set is a long-standing and challenging
problem that has attracted a great number of investigators.

A simple approach to the problem of determining the num-
ber of clusters is to generate several partitions with different
number of clusters and to choose the best partition based on an
internal evaluation index. By plotting the dependency of this
index on the number of clusters, it is possible to determine the
number of clusters. One of the best-known techniques for the
determination of the number of clusters is to check the elbow
point on the resulting curve [2]. This elbow is loosely defined
as the point of maximum curvature and the desired number of
clusters is the cluster coordinate of the elbow point.

An alternative method is the gap statistics which aims to
formalize the intuitive approach of the “elbow method” by
comparing of the logarithm of the cohesion with a reference
distribution of the data [3]. However, this method only works
on well-separated datasets. An alternative approach proposed
in [4] regards clustering as a supervised classification problem
which requires the estimation of “true” class labels. The
prediction strength measure evaluates the number of groups
that can be predicted from data.

In [5] the largest ratio difference between two adjacent
points is used to locally find the elbow point along the curve.
Other authors use more than one pairs of points. The first data
point with a second derivative above some threshold value
is used to specify the elbow point [6], [7], while in [8] the

data point with the largest second derivative is used. All these
techniques are sensitive to outliers and local trends, which may
not be globally significant [2].

Yet another approach to the estimation of the number
of clusters is applying consensus clustering [9] and resam-
pling [10]. This involves clustering many samples of the data
set, and determining the number of clusters where clusterings
of the various samples are the most stable [2]. Consensus
clustering or clustering aggregation, has been explored for
decades. A formal definition is given in [11], where consensus
clustering is defined as a clustering that minimizes the total
number of disagreements with a set of clusterings. This tech-
nique can deal with a variety of problems such as developing
a natural clustering algorithm for categorical data, improve
the clustering robustness by combining the results of many
clustering algorithms, as well as determine the appropriate
number of clusters. In recent years, many approaches have
been developed to solve ensemble clustering problems [12],
[13], [14], [15], [16], [17] and [18].

As a task of consensus clustering, determining the number
of clusters has been considered in several publications. In [19]
a hierarchical clustering framework is proposed that combines
partitional clustering (k-means) and hierarchical clustering. A
random walk technique on the graph defined by a consensus
matrix of clusterings is used in [20] to determine the natural
number of clusters.

Information-theoretical methods are also applicable for de-
tecting the number of clusters in a dataset by defining a “jump
method” of the transformed distortion d on a partition πd. The
highest increase of d indicates the number of clusters with
respect to πd [21]. However, this approach is based on a strong
assumption that the clusters are generated based on Gaussian
distributions. By integrating Rényi entropy and complement
entropy together, Liang et al [22] propose a method which can
determine the number of clusters on a dataset that has mixed
set of feature types. Their approach proposes a clustering
validation index which considers within-cluster entropy and
between-cluster entropy and the best number of clusters is
chosen when such index reaches the maximum.

There also several other methods on detecting the number of
clusters in a dataset. In [23] the Maximum Stable Set Problem
(MSSP) combined by Continuous Hopfield Network (CHN) is



used to find the natural number of clusters of a data set. The
algorithm detects the number of stable sets and uses this to
represent the number of clusters.

Shaqsi and Wang [24], [25] work with a similarity parameter
and observe that in a certain range of this parameter, the
number of clusters formed by their 3-staged algorithm remains
constant. The number of clusters that corresponds to the
longest interval is chosen as the most appropriate number.

Kolesnikov, Trichina, Kauranne [26] create a parametric
modeling of the quantization error to determine the optimal
number of clusters in a dataset. This method treats the model
parameter as the effective dimensionality of the dataset. By
extending the decision-theoretic rough set model an efficient
method to detect the number of clusters is presented in [27].
This model applies the Bayesian decision procedure for the
construction of probabilistic approximations. Hamerly and
Elkan [28] propose an algorithm that based on a statistical test
for the hypothesis that a subset of data follows a Gaussian
distribution. It only requires one parameter and avoids the
calculation of the covariance matrix. An incremental approach
called ”dip-means”, is introduced in [29] with the underlying
assumption that each cluster admits a unimodal distribution.
The statistic hypothesis test for unimodality (dip-test) is ap-
plied on the distribution of distances between one cluster
member and others.

In [30] a new method for automatically detecting the
number of clusters based on image processing techniques is
discussed. This method adopts the key part of Visual Assess-
ment of Cluster Tendency(VAT), and regards the dissimilarity
matrix as an image matrix. Image segmentation techniques
are applied to an image generated by this matrix, followed by
filtering and smoothing to decide the number of clusters in the
original data.

Cheung [31] proposes a new novel algorithm that can
automatically select the number of clusters by presenting
a mechanism to control the strength of rival penalization
dynamically.

We propose a new method to evaluate the number of
clusters using the metric space of partitions of a dataset.
Using an extension of a seminal result of L. de Mántaras [32]
we introduce a metric on partitions of finite sets defined
by β-entropies of partitions (which generalize the Shannon
entropy). The notion of β-entropy was introduced in [33], [34],
and axiomatized in [35]. Other significant generalizations of
entropy belong to C. Tsallis [36], [37].

Our approach seeks to optimize both clustering partition en-
tropy and the cohesion of clustering. Since partition entropy is
anti-monotonic and cluster cohesion are a monotonic function
relative to the partial order set of partitions, we can use the
Pareto Front to identify the natural number of clusters existent
in a data set.

We emphasize that we seek to determine the optimal num-
ber of cluster considering clusterings produced by specific
algorithms (e.g. k-means or hierarchical approaches) thereby
avoiding prohibitively expansive searches over the entire space
of partitions of a set.

The paper is organized as follows. In Section II partition
entropy is introduced. Section III illustrates the compromise
between cluster entropy and its corresponding cohesion and
how it is used on determining the number of clusters. The
experimental results are analyzed in Section IV. Conclusions
and future work are discussed in Section V.

II. THE METRIC SPACE OF PARTITIONS OF A FINITE SET

Properties of generalized entropy defined on partition lat-
tices were explored in [38].

Unless stated otherwise all sets are supposed to be finite.
A partition of a set S is a non-empty collection of non-empty
subsets of S, π = {B1, . . . , Bn} such that Bi ∩ Bj = ∅ for
i 6= j and

⋃n
i=1Bi = S. The set of partitions of a set S is

denoted by PART(S).
If π, σ ∈ PART(S) we write π 6 σ if every block of σ is

a union of blocks of π. The relation “6” is a partial order on
PART(S) having ιS = {{x} | x ∈ S} as its least element
and ωS = {S} as its largest element, so ιS 6 π 6 ωS for
π ∈ PART(S). The partially ordered set (S,6) is a lattice,
where π∧σ = {Bi∩Cj | Bi ∈ π,Cj ∈ σ and Bi∩Cj 6= ∅}.
The other lattice operation, π ∨ σ has a more complicated
description that can be found, for example, in [39].

The partition σ covers the partition π (denoted by π ≺ σ) if
π 6 σ and there is no partition τ distinct from π and σ such
that π 6 τ 6 σ. It is known (see [40]) that π ≺ σ if and only
if σ is obtained from π by fusing two blocks of π. Of course,
if π 6 σ, there exists a chain of partitions τ0, τ1, . . . , τn such
that π = τ0, τi ≺ τi+1 for 0 6 i 6 n− 1 and τn = σ.

If π = {B1, . . . , Bn} ∈ PART(S) and C ⊆ S, the trace
of π on C is the partition πC ∈ PART(C) given by πC =
{Bi ∩ C | Bi ∈ π and Bi ∩ C 6= ∅}. Note that we have
π 6 σ if and only if σB = ωB for every block B of π.

If π = {B1, . . . , Bn} is a partition of a set S and β > 0,
then its β-entropy (introduced in [33], [34]), Hβ , is given by:

Hβ(π) =
1

1− 21−β

(
1−

n∑
i=1

(
|Bi|
|S|

)β)
. (1)

It is immediate that Hβ(ωS) = 0.
Note that limβ→1Hβ = −

∑n
i=1

|Bi|
|S| log |Bi||S| , as it can

be verified immediately by applying l’Hôpital rule. Thus, the
Shannon entropy is a limit case of the generalized entropy.

Let hβ : [0, 1] −→ R be defined by hβ(x) = x−xβ
1−21−β ,

where β > 0 and β 6= 1. Since h′′β(x) = −β(β−1)xβ−2

1−21−β , it
follows that h′′β(x) 6 0 because 1 − 21−β > 0 when β > 1,
and 1 − 21−β 6 0 when β 6 1. Therefore, hβ is a concave
function for β > 0 and β 6= 1.

We have hβ
(
1
2

)
= 1

2 ; the maximum of hβ on the [0, 1]

interval is achieved at xβ = β−
1

β−1 and equals β−1
1−21−β β

− β
β−1 .

The function hβ is subadditive for every β ∈ (0, 1) ∪ (1,∞),
that is,

hβ(x+ y) 6 hβ(x) + hβ(y)

for x, y ∈ [0, 1]. Observe that limβ→1 hβ(x) = x log2
1
x .



Since

Hβ(π) =
1

1− 21−β

(
1−

n∑
i=1

(
|Bi|
|S|

)β)

=

n∑
i=1

hβ

(
|Bi|
|S|

)
,

the concavity of hβ implies that the maximum value of
Hβ(π) is achieved when |B1| = · · · = |Bn| and is equal
to 1

1−21−β
(
1− n1−β

)
. Thus, the maximal value of Hβ(π) is

obtained when π = ιS and it is equal to 1
1−21−β

(
1− |S|1−β

)
.

Note that the minimal value of Hβ(π) is achieved when
π = ωS , Hβ(ωS) = 0 and Hβ(π) = 0 implies π = ωS .

For β = 2 we obtain the well-known Gini index

H2(π) = 2

(
1−

n∑
i=1

(
|Bi|
|S|

)2
)
.

Let {S1, . . . , Sn} be a partition of the set S and let
π1, . . . , πn be n partitions such that πi ∈ PART(Si) for
1 6 i 6 n. Define the partition π1 + · · ·+ πn as the partition
of S that consists of all blocks of π1, . . . , πn. Then,

Hβ(π1 + . . .+ πn) = Hβ({S1, . . . , Sn})

+

n∑
i=1

(
|Si|
|S|

)β
Hβ(πi).

If π = {B1, . . . , Bm} and let σ = {C1, . . . , Cn} are two
partitions in PART(S), then

Hβ(π ∧ σ) = Hβ(σ) +

m∑
j=1

(
|Cj |
|S|

)β
Hβ(πCj )

= Hβ(π) +

n∑
i=1

(
|Bi|
|S|

)β
Hβ(σBi).

The conditional β-entropy Hβ(π|σ) is defined as

Hβ(π|σ) = Hβ(π ∧ σ)−Hβ(σ).

The β-entropy is anti-monotonic, that is, for β ∈ R>0 − {1}
and π, σ ∈ PART(S), π 6 σ implies Hβ(σ) 6 Hβ(π). The
conditional β-entropy Hβ(π|σ) is anti-monotonic in its first
argument and monotonic in its second, that is π1 6 π2 implies
Hβ(π1|σ) > Hβ(π2|σ) and σ1 6 σ2 implies Hβ(π|σ1) >
Hβ(π|σ2).

A result obtained in [38] (which is a generalization of a
result of [32]) shows that the function dβ : PART(S) ×
PART(S) −→ R defined by dβ(π, σ) = Hβ(π|σ) +Hβ(σ|π)
is a metric on PART(S). This function will be used to evaluate
distance between clusterings regarded as sets of objects.

III. DUAL CRITERIA CLUSTERING USING ENTROPY AND
COHESION

Partition entropy evaluates the imbalance between the sizes
of the clusters that constitute a partition. For a fixed number
of blocks, the entropy is maximal when blocks have equal
sizes. As we saw in Section II, the smaller the partition in the

poset (PART(S),6) the larger the entropy. Thus, the largest
value of the entropy of a partition of S is achieved for ιS ; the
smallest value is obtained for the one-block partition ωS .

Cohesion is a measure of the quality of a clustering π,
defined as the within-cluster sum of squared errors and denoted
by sse(π).

Let S be the set of objects to be clustered. We assume that
S is a subset of Rn equipped with the Euclidean metric. The
center cC of a subset C of S is defined as cC = 1

|C|
∑
{o |

o ∈ C}.
For a partition π = {C1, C2, . . . , Cm} of S the sum of

square errors sse of π is defined as

sse(π) =

m∑
i=1

∑
o∈Ci

d2(o, cCi). (2)

The next theorem can be found in [39].
Theorem III.1: Let κ, λ ∈ PART(S). If κ 6 λ, then

sse(κ) ≤ sse(λ).
Proof. It suffices to prove this result for partitions κ, σ such

that κ ≺ σ. Suppose that κ = {C1, . . . , Cn}. Since κ ≺ λ, the
blocks of κ coincide with the blocks of λ with the exception of
two blocks Cj and Ck of κ whose union is the block Cj ∪Ck
of λ. The difference in cohesion between λ and κ is

sse(λ)− sse(κ) (3)

=
∑
{d2(o, cCj∪Ck) | o ∈ Cj ∪ Ck}

−
∑
{d2(o, cCj ) | o ∈ Cj}

−
∑
{d2(o, cCk) | o ∈ Ck}.

Since the centroid of Cj ∪ Ck is

cCj∪Ck =
1

|Cj ∪ Ck|
∑
{o | o ∈ Cj ∪ Ck}

=
|Cj |

|Cj ∪ Ck|
cCj +

|Ck|
|Cj ∪ Ck|

cCk ,

after elementary transformations we obtain∑
{d2(o, cCj∪Ck)− d2(o, cCj ) | o ∈ Cj}

=
|Cj ||Ck|2

|Cj ∪ Ck|2
(cCk − cCj )

2.

Similarly, we have:∑
{d2(o, cCj∪Ck)− d2(o, cCk) | o ∈ Ck}

=
|Cj |2|Ck|
|Cj ∪ Ck|2

(cCk − cCj )
2

The last two equalities imply

sse(λ)− sse(κ) =
|Cj ||Ck|
|Cj ∪ Ck|

(cCk − cCj )
2 ≥ 0. (4)

Theorem III.1 shows that cohesion is an anti-monotonic
function on the partially ordered set (PART(S),6); we have
sse(ιS) = 0 and sse(ωS) =

∑
o∈S ‖ o ‖2 −|S| ‖ cS ‖2. Thus,

the entropy varies inversely with the cohesion of partitions.



Entropy and cohesion describe the clustering result from
two different perspectives and this suggest that a bi-criterial
optimization would be helpful for choosing the best cluster-
ings.

We aim to simultaneously minimize H(π) and sse(π) that
have inverse types of variations with clusterings considered as
partitions. This will allow us to define a natural number of
clusters using the Pareto front of this bi-criterial problem. Let
F : PART(S) −→ R2, where

F(π) = (H(π), sse(π)), (5)

where π ∈ PART(S).
Definition III.2: Let π, σ ∈ PART(S). The partition σ

dominates π if H(σ) 6 H(π) and sse(σ) 6 sse(π).
A partition τ ∈ PART(S) is Pareto optimal if there is no

other partition that dominates τ .
In principle, several optimal partitions may exist, each with

a specific number of clusters. The set of partitions that are
not dominated by other partitions is the Pareto front of this
problem (see [41], [42]).

If a partition π is Pareto optimal, then it is no worse than
another partitions from the point of view of (H(π) and sse(π))
and is better in at least one of these criteria.

To speed up the search for the members of the Pareto
front we scalarize the problem by computing a single ob-
jective optimization function defined utilizing the concept
of hypervolume [43] on entropy and sse. The hypervolume
measure is the size of the space covered or size of dominated
space (see [43]), is the Lebesgue measure Λ of the union of
hypercubes ai defined by a non-dominated point mi and a
reference point xref [44].

In our case, we set the reference point at the position that
both entropy and sse reaches its maximum. The maximum of
entropy will be reached on partition ιS , while the maximum
value of sse is obtained at partition ωS . Then, the hypervolume
that corresponds to a partition π is

HV(π) = (H(ιS)−H(π))(sse(ωS)− sse(π)) (6)

The optimal partition for a dataset is obtained as

πopt = argmax
π

HV(π). (7)

IV. EXPERIMENTAL RESULTS

Our approach was tested on different datasets to evaluate
their performance. We used 5 synthetic datasets and 7 real-
world datasets.

The 2-dimensional synthetic datasets contain 5 Gaussian
distributed clusters; each cluster contains 300 data points
produced using the R function RMVNORM implemented by
Leisch, F. et al [45]. By varying the means and standard
deviations, we obtained five different types of clusterings.
having the following features:
• clusters that are well separated;
• clusters that are well separated but closer with each other;
• clusters that have different density;
• clusters that have different sizes and number of points;

• clusters that overlap.

The data structures are shown in Figure 1.
Also, we used several real-world data sets which originate

from UCI machine learning repository [46].
Iris Data: This dataset contains 150 cases and 4 vari-

ables named Sepal.Length, Sepal.Width, Petal.Length and
Petal.Width corresponding to 3 species of iris (setosa, ver-
sicolor, and virginica) [47].

Wine Recognition Data: These data are the results of a
chemical analysis of wines. The analysis determined the
quantities of 13 constituents found in each of the three types
of wines [48]. The distribution of three classes is as follows:
class 1: 59; class 2: 71; class 3: 48.

LIBRAS Movement Database: LIBRAS, acronym of the Por-
tuguese name “LÍngua BRAsileira de Sinais”, is the official
Brazilian sign language. The dataset contains 15 classes of 24
instances each, where each class refers to a hand movement
type in LIBRAS. Each instance represents 45 points on a 2-
dimensional space, which can be plotted in an ordered way
(from 1 through 45 as the x-coordinate) in order to draw the
path of the movement.

Pen-Based Recognition of Handwritten Digits: The digit
database was created by collecting 250 samples from 44
writers. Digits are represented as feature vectors by using
linear interpolation between pairs of (xt, yt) points. Here xt
and yt is the coordinate information for the digits at when the
writer is written. There are 10 different digits in the data set
and the numbers of instance for each digits are roughly the
same.

E.coli Dataset: This dataset contains 360 instances and 7
features and is used to predict the protein localization site. 8
classes are embedded into the dataset with the largest class of
143 data points and the smallest one of only 2.

Vowel Recognition: The dataset is generated from speakers’
independent recognition of the eleven steady state vowels
of British English using a specified training set of LPC
derived log area ratios. It consists of a three-dimensional array:
voweldata [speaker, vowel, input]. The speakers are indexed by
integers 0-89. (Actually, there are fifteen individual speakers,
each saying each vowel six times.) The vowels are indexed by
integers 0-10. For each utterance, there are ten floating-point
input values, with array indices 0-9. It has 990 instances.

Poker Dataset: This dataset records a set of card types
people hold in their hands. Each record is an example of a
hand consisting of five playing cards drawn from a standard
deck of 52. Each card is described using two attributes (suit
and rank), for a total of 10 predictive attributes. There is one
Class attribute that describes the ”Poker Hand”. To enhance
the performance, in our case, we neglect the Class 0 (Nothing
in hand; not a recognized poker hand) due to its heavy weight
on the number of data points.

To verify the stability of our method, four other popular
methods on determining number of clusters are used for
comparison.



(a) Data Structure (b) HV-index curve (c) Data Structure (d) HV-index curve

(e) Data Structure (f) HV-index curve (g) Data Structure (h) HV-index curve

(i) Data Structure (j) HV-index curve

Fig. 1: The original dataset and the HV-index of 5 synthesis datasets and their corresponding clustering structures; the x-axis
of the HV-index graph represents the number of cluster of k-means clustering while the y-axis represents the index value.

1) Gap Statistics: This method gives the natural number of
clusters by defining a gap function as follows:

Gapn(k) = E∗n log(Wk)− log(Wk),

where E∗n denotes the expectation under a sample of size
n from the reference distribution, and Wk is the pooled
within-cluster sum of the squares of distances between
objects. The estimated k̂ will be the value maximizing
Gapn(k) after taking the sampling distribution into
account [3].
The idea of this criterion is to standardize the graph of
log(Wk) by comparing it with its expectation under an
appropriate full reference distribution of the data. The
estimate of the optimal number of clusters is then the
value of k for which log(Wk) falls the farthest below
this reference curve. We use the function clusGap in
R package “cluster” for simulation [49].

2) Jump method: It uses the concept of distortion to
describe the within-cluster dispersion for a particular

partition [21]. The definition of the minimum achievable
distortion associated with fitting k centers to the data is

dk =
1

p
min

c1,...,ck
E[(X− cx)TΓ−1(X− cx)], (8)

where X is a p-dimensional random variable having a
mixture distribution of K components, and each with
covariance Γ. The c1, . . . , ck are a set of candidate
cluster centers and cx is the one closest to X.
Equality (8) gives the average Mahalanobis distance,
per dimension, between X and cx . If Γ is the identity
matrix, distortion will be the mean squared error. The
number of cluster k is determined as

k = argmin
k

d−Yk − d−Yk−1,

where Y is an arbitrary value called transformation
power and it usually equals to p

2 .
3) Prediction Strength: For a particular dataset S, let Xtr

and Xte be the training and testing subset of the data,
where Xtr ∪ Xte = S. Then we partition both Xtr



(a) Pareto Front for Iris Dataset (b) Pareto Front for Libras Dataset

Fig. 2: The Pareto Front of solution of Equation (5) for Iris and Libras dataset using k-means clustering algorithm. The labelled
points represents Pareto optimal partitions and the label shows the corresponding number of clusters. x-axis represents the
cohesion while y-axis is the entropy. Both are normalized into [0, 1].

and Xte into k clusters. Let πtr = A1, . . . , Ak and
πte = B1, . . . , Bk be the partitions for Xtr and Xte,
respectively. The prediction strength of S given k is
defined in [4] as

PS(k) = min
16l6k

∑
i6=j{δ((xi, xj),Xtr) | xi, xj ∈ Bl}

|Bl|(|Bl| − 1)
,

where δ is an indicator function. If we assign xi and
xj to their nearest centroids in πtr, say cAi and cAj ,
respectively. If Ai = Aj , then δ((xi, xj),Xtr) = 1,
otherwise, it is 0. This method is mainly implemented
with the help of function prediction.strength in
R package “fpc” [50].

4) ACA-DTRS: The Automatically Clustering Algorithm
using Decision-Theoretic Rough Set model (ACA-
DTRS) introduced in [27] can detect the number of
clusters by utilizing the concept of rough set. It creates
a clustering validity index Risk(CSt) based on the
similarity matrix to guide the choice of a number of
clusters.

Our method performs well on several synthetic datasets, as
shown in Figure 1.

The HV-index is designed to solve the multi-objective
Equality (5) which consider two general validation indexes
of clustering.

Since we are seeking to minimize both the entropy and the
cohesion, the region of feasible solutions should have a convex
structure in the left-lower bound. If the algorithm can cluster
the dataset well, the partition generated from it will be close
to the bound of the region of feasible solution. Thus, the set of
pairs (H(π), sse(π)) for different partitions will form a convex
curve. Figure 2 shows the pair of entropy and sse of k-means
clustering results with different number of clusters on Iris and
Libras dataset.

The HV index scalarizes the Equation (5) using the hyper-
volume indicator. Both entropy and cohesion are normalized
to values in [0, 1]. The entropy on partition is defined as the
generalized entropy in Equation (1) with parameter β. As
illustrated in last part of Section III, different values of β will

affect detection of the natural number of clusters. The β value
we pick is given in Table I for each dataset.

In most cases, we choose β = 1.0001 in our experiments.
As mentioned in Section II, H(p) = limβ→1Hβ(p) is Shan-
non Entropy.

The natural number of clusters is successfully determined
for all synthetic data sets. The HV index method worked for
the dataset with overlapping clusters for β = 0.95 even if the
value on 3 is also relatively high (Figure 1j).

Tables I and II give the results of the application of the
algorithm on total of 12 different datasets (5 synthetic and 7
real datasets). The HV index works well on all of those 5 syn-
thetic datasets (designated as Well-Separated I, Well-Separated
II, Different Densities, Skewed Densities, and Overlapping
Clusters). In Table II, we show that our algorithms outperform
some existing algorithms both in detecting the correct number
of clusters and in time performance. All experiments were
performed on a 64-bit, Lenovo X1-Carbon laptop with Core
i7 and 8GiB memory.

The flexibility afforded by generalized entropies allows
choosing β to improve results in the case of imbalanced data
sets.

Experiments suggest that small values of β may compensate
for the sizes of small clusters and thus provide a more accurate
estimation of the natural number of clusters. We verified this
assumption on both synthetic (the skewed distributed dataset
as shown in Figure 1g) and real data.

For data sets involved in the experiments a random portion
of one of the clusters was removed and we sought to determine
the number of clusters in the resulting imbalanced data using
the dual criteria algorithm. In the Iris data set we eliminated
a portion of the versicolor cluster. As shown in Figure 3a, 3b,
to retrieve the correct number (in our case, it is 5 and 3) better
results are obtained with values of β that are less than 1.

For the data set Wine, there are three unbalanced clusters:
the size of the largest one is almost twice as the size of the
smallest. To maintain consistency, we randomly removed 50%
to 90% of the largest cluster, so that we can have roughly the
same situation as in previous two examples. Figure 3c still



TABLE I: Comparison between the number of clusters for datasets

Data Sets Cardinality actual no.
β

natural number of clusters
of Datasets of Classes HV Index Gap Stat. Jump Mthd. Pred. Strgth.

Well Sepr. I 900 5 1.00 5 5 5 3
Well Sepr. II 900 5 1.00 5 5 5 5
Diff. Density 900 5 1.00 5 5 5 5
Skewed Dist. 900 5 1.00 5 5 30 5
Overlapping 900 5 0.95 5 3 3 5

Iris 150 3 1.00 3 4 24 3
Libras 360 15 1.00 13 6 30 2

PenDigits 10992 10 1.20 9 22 29 6

TABLE II: Detecting the number of clusters for additional datasets including CPU times(s)

Data Sets Cardinality actual no.
β

natural number of clusters
of Datasets of Classes HV Index Gap Stat. Jump Mthd. Pred. Strgth. ACA-DTRS

Wine 178 3 1.00 4 (0.648) 1 (1.219) 28 (0.933) 3 (2.006) 5 (2.11)
E. coli 336 8 0.9 7 (0.646) 6 (1.899) 25 (1.3) 3 (1.957) 6 (13.791)
Vowel 990 11 0.8 9 (1.353) 4 (5.672) 29 (1.525) 4 (2.896) 4 (52.203)

Poker(1-9) 511308 9 1.4 10 (477.107) 4 (18.885) 29 (1574.23) 2 (2080.16) 8 (665.406)

shows a similar dependency of the quality of the clustering
for smaller values of β.

For all three data sets, we recorded the average point of the
range for each portion of the reduced cluster and apply linear
regression. The regression results presented in Figure 3 show
that regression lines have positive slopes, which indicate that
smaller values of β yield better results for large imbalances
created by reduction in size of one of the clusters.

V. CONCLUSIONS

We presented a new performant algorithm for the detection
of the number of clusters in a dataset in the context of a given
clustering algorithm (k-means).

Our heuristics seeks to determine the number of clusters
existent in a data set as the number of blocks of a partition
produced by specific algorithms (in our case, the k-means
algorithm) that maximizes the hypervolume attached to these
clusterings. Pareto Fronts are used utilized to identify the
desired partition.

The consistency of results produced by experiments per-
formed on both synthetic and real datasets using a variety
of algorithms confirm that this technique gives a relatively
cheaper technique comparing with existing methods.

We intend to focus our attention on clustering imbalanced
data, where the generalized entropy and a metric generated by
this entropy seem promising.
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